Kubeflow KFServing中vLLM模型部署问题解析与解决方案
2025-06-16 12:54:36作者:韦蓉瑛
问题背景
在使用Kubeflow KFServing部署vLLM大语言模型服务时,用户遇到了两个主要的技术问题:YAML格式解析错误和API接口调用问题。本文将详细分析这些问题产生的原因,并提供完整的解决方案。
YAML格式问题分析
最初用户按照文档提供的YAML配置部署InferenceService时,遇到了"did not find expected '-' indicator"错误。这个错误是由于YAML格式不规范导致的,具体表现为:
- 容器参数部分的缩进不正确
- 列表项缺少正确的"-"标识符
- 某些字段的层级关系不明确
正确的YAML配置
经过调整后,有效的YAML配置如下:
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
namespace: kserve-test
name: bloom
spec:
predictor:
containers:
- args:
- --port
- "8080"
- --model
- "/mnt/models"
command:
- python3
- -m
- vllm.entrypoints.api_server
env:
- name: STORAGE_URI
value: pvc://task-pv-claim/bloom-560m
image: docker.io/kserve/vllmserver:latest
imagePullPolicy: IfNotPresent
name: kserve-container
resources:
limits:
cpu: "5"
memory: 20Gi
nvidia.com/gpu: "1"
requests:
cpu: "5"
memory: 20Gi
nvidia.com/gpu: "1"
关键修正点包括:
- 确保所有列表项以"-"开头并正确缩进
- 参数和值作为独立的列表项
- 保持一致的缩进层级
模型存储配置
在配置模型存储时,可以使用PVC(Persistent Volume Claim)方式:
env:
- name: STORAGE_URI
value: pvc://task-pv-claim/bloom-560m
这表示模型文件存储在名为"task-pv-claim"的持久卷中,路径为"bloom-560m"。
API接口调用问题
最初用户尝试了多种API端点都返回404错误,包括:
- /v1/models/bloom-560m:predict
- /v2/models/bloom-560m/generate
- /v1/completions
经过测试发现,标准的vLLM API服务器只支持/generate端点。正确的调用方式为:
curl -v -H "Host: ${SERVICE_HOSTNAME}" -H "Content-Type: application/json" \
http://${INGRESS_HOST}:${INGRESS_PORT}/generate \
-d '{"prompt": "San Francisco is a" }'
成功响应示例:
{"text":["San Francisco is a medium-sized family donating site with nonprofits, churches, Catholic organizations and business"]}
高级配置:支持OpenAI协议
如果需要支持OpenAI兼容的API协议,应该使用不同的入口点:
command:
- python3
- -m
- vllm.entrypoints.openai.api_server
这样配置后,服务将支持标准的OpenAI API端点,如/v1/completions等。
模型文件准备
对于需要在PVC中准备模型文件的情况,可以使用初始化容器来完成。以下是一个完整的示例:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: vlmm-gpt2-claim
namespace: vllm-gpt2
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
apiVersion: v1
kind: Pod
metadata:
name: setup-gpt2-binary
namespace: vllm-gpt2
spec:
volumes:
- name: model-volume
persistentVolumeClaim:
claimName: vlmm-gpt2-claim
containers:
- name: download-model
image: registry.access.redhat.com/ubi9/python-311:latest
command: ["sh"]
args: [ "-c", "pip install --upgrade pip && pip install --upgrade huggingface_hub && python3 -c 'from huggingface_hub import snapshot_download\nsnapshot_download(repo_id=\"gpt2\", local_dir=\"/mnt/models/gpt2\", local_dir_use_symlinks=False)'"]
volumeMounts:
- mountPath: "/mnt/models/"
name: model-volume
这个配置会从Hugging Face Hub下载GPT-2模型并保存到PVC中,后续可以在InferenceService中引用。
总结
在Kubeflow KFServing中部署vLLM大语言模型服务时,需要注意以下几点:
- YAML格式必须严格符合规范,特别是列表项的表示和缩进
- 默认的vLLM API服务器只支持/generate端点
- 如需OpenAI协议支持,需使用openai.api_server入口点
- 模型文件可以通过PVC方式挂载,并使用初始化容器准备
- 资源请求和限制需要根据模型大小合理配置
通过以上解决方案,用户可以成功在KFServing环境中部署和调用vLLM支持的大语言模型服务。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0132
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
480
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882