Kubeflow KFServing集成LMCache优化LLM推理性能的技术解析
2025-06-15 04:23:40作者:明树来
在大型语言模型(LLM)服务化部署领域,KV Cache共享技术正成为提升推理效率的重要突破口。本文将深入分析Kubeflow KFServing社区关于集成LMCache的技术方案,探讨其对多轮对话场景的性能优化价值。
技术背景
传统LLM推理过程中,每次请求都需要重新计算键值缓存(KV Cache),当处理包含重复上下文的请求时(如多轮对话),这种重复计算会造成显著的资源浪费。LMCache创新性地实现了KV Cache的跨请求共享机制,通过缓存已计算的注意力键值对,使后续包含相同上下文的请求能够直接复用缓存结果。
性能优势
根据LMCache团队公布的基准测试数据,在多轮问答工作负载下,该技术能同时优化两个关键指标:
- 首令牌延迟(TTFT):降低初始响应时间
- 令牌间延迟(ITL):提升持续输出速度
这种优化效果在对话式AI场景尤为显著,例如客服机器人、持续交互式应用等场景,其中用户往往会在多轮对话中重复提及相同上下文。
实现方案
在KFServing中的集成主要涉及两个核心组件:
-
路由服务:需要部署独立的路由组件,负责识别请求中的上下文重复模式,并决定是否触发缓存复用机制。
-
缓存配置:在vLLM推理引擎的部署配置中,需要添加LMCache专用参数,包括:
- 缓存存储策略
- 上下文匹配阈值
- 缓存失效机制
技术挑战
实际落地时需要考虑以下工程问题:
- 缓存一致性:确保共享缓存在分布式环境中的一致性
- 内存管理:平衡缓存命中率与内存占用之间的关系
- 安全隔离:不同租户/用户的缓存数据隔离
应用前景
该技术的应用将显著提升以下场景的服务质量:
- 高频重复查询的问答系统
- 需要维护长对话上下文的虚拟助手
- 基于检索增强生成(RAG)的应用
随着LLM服务化需求的增长,KV Cache共享技术将成为优化推理成本与性能的关键手段,KFServing的这次集成将为社区提供重要的基础设施支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
630
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210