ASP.NET Extensions项目中的AI模型元数据设计演进
2025-06-27 11:41:57作者:庞眉杨Will
在ASP.NET Extensions项目中,开发团队正在对AI相关功能进行重要改进,特别是围绕模型元数据的设计进行了深入讨论和优化。本文将详细介绍这一演进过程及其技术考量。
背景与需求
在AI应用开发中,客户端需要了解底层模型的能力和特性,以便做出最佳决策。例如,一个聊天客户端可能需要知道当前模型是否支持原生JSON模式输出,或者一个嵌入生成器需要了解默认的向量维度数。这些信息对于构建健壮且高效的AI应用至关重要。
现有设计的局限性
当前实现中存在几个关键限制:
- 元数据概念过于简单,仅包含基本属性如ModelId和Dimensions
- 无法区分提供者级别和模型级别的元数据
- 缺乏对模型特定能力的动态查询机制
- 同步API设计限制了从远程服务获取最新信息的能力
新设计方案
团队提出了一个分层的元数据设计方案:
提供者元数据
保留现有的ChatClientMetadata和EmbeddingGeneratorMetadata类,但进行以下改进:
- 添加
ProviderName和ProviderUri属性 - 将
ModelId重命名为DefaultModelId以更准确表达其含义 - 新增
GetModelMetadataAsync方法用于查询特定模型的详细信息
模型元数据
引入新的ChatModelMetadata和EmbeddingModelMetadata类:
public class ChatModelMetadata
{
public bool? SupportsNativeJsonSchema { get; }
// 未来可扩展更多属性
}
public class EmbeddingModelMetadata
{
public int? Dimensions { get; }
// 未来可扩展更多属性
}
这些类设计为可扩展的,允许第三方添加特定于其实现的属性。
技术考量与决策
在实现过程中,团队面临并解决了几个关键问题:
-
同步vs异步API:最终选择了异步设计,以支持从远程服务获取元数据,同时要求实现者自行处理缓存。
-
缓存策略:决定不强制统一缓存机制,而是让各实现根据自身特点选择最适合的缓存方式。
-
中间件交互:明确元数据应反映底层提供者的真实能力,而非中间件修改后的状态。
-
可扩展性:通过允许子类化和nullable属性,确保设计能适应未来各种模型和提供者的特性。
实际应用示例
开发者现在可以这样使用新的元数据系统:
var chatClient = services.GetRequiredService<IChatClient>();
var metadata = chatClient.GetMetadata();
var modelMetadata = await metadata.GetModelMetadataAsync("gpt-4");
if (modelMetadata.SupportsNativeJsonSchema == true)
{
// 使用原生JSON模式优化功能调用
}
未来发展方向
这一设计为未来的扩展奠定了基础:
- 可以添加更多模型特性描述,如上下文窗口长度、推理能力等
- 支持更精细的模型能力查询
- 可能引入模型列表查询功能
- 增强与各种AI服务提供商的特有元数据集成
这一改进使ASP.NET Extensions项目在AI功能支持方面更加完善和灵活,为开发者提供了更强大的工具来构建智能应用程序。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328