使用Pandas将数据高效插入MySQL数据库 - ipeirotis/dealing_with_data项目实践
2025-06-04 06:50:51作者:农烁颖Land
前言
在数据分析和处理过程中,我们经常需要将处理好的数据存储到数据库中以便后续使用。Python的Pandas库提供了非常便捷的方法来实现这一需求。本文将通过ipeirotis/dealing_with_data项目中的一个实际案例,详细介绍如何使用Pandas将数据高效地插入MySQL数据库。
准备工作
在开始之前,我们需要安装必要的Python库:
!pip install -U -q PyMySQL sqlalchemy
这两个库分别用于:
- PyMySQL:Python连接MySQL数据库的驱动
- SQLAlchemy:Python SQL工具包和ORM框架
获取数据源
本案例使用纽约市Citibike共享单车系统的公开API作为数据源。我们主要关注两个API端点:
# 站点基本信息(相对稳定)
url_stations = "https://gbfs.citibikenyc.com/gbfs/en/station_information.json"
# 站点实时状态(动态变化)
url_status = "https://gbfs.citibikenyc.com/gbfs/en/station_status.json"
首先获取站点基本信息:
import requests
results = requests.get(url_stations).json()
data = results["data"]["stations"]
数据处理与DataFrame创建
将获取的JSON数据转换为Pandas DataFrame:
import pandas as pd
df = pd.DataFrame(data)
查看数据前5行:
df.head(5)
由于原始数据中包含一些不适合直接存入数据库的字段(如包含多个值的列表),我们需要进行清理:
df.drop(
["rental_methods", "eightd_station_services", "rental_uris"],
axis="columns",
inplace=True,
)
数据库连接配置
使用SQLAlchemy创建数据库连接引擎:
import sqlalchemy
from sqlalchemy import create_engine, text
conn_string = "mysql+pymysql://{user}:{password}@{host}/".format(
host="db.ipeirotis.org", user="student", password="dwdstudent2015"
)
engine = create_engine(conn_string)
数据库和表创建
创建数据库
db_name = "public"
create_db_query = (
f"CREATE DATABASE IF NOT EXISTS {db_name} DEFAULT CHARACTER SET 'utf8'"
)
with engine.connect() as con:
con.execute(text(create_db_query))
con.execute(text(f"USE {db_name}"))
创建表结构
为了避免多人协作时的表名冲突,我们为表名添加随机后缀:
import uuid
suffix = str(uuid.uuid4())[:8]
table_name = f"Stations_{suffix}"
定义表结构:
create_table_query = f"""CREATE TABLE IF NOT EXISTS {db_name}.{table_name}
(legacy_id int,
station_id varchar(100),
region_id int,
external_id varchar(50),
lat float,
lon float,
short_name varchar(10),
name varchar(250),
station_type varchar(10),
capacity int,
electric_bike_surcharge_waiver bool,
eightd_has_key_dispenser bool,
has_kiosk bool,
PRIMARY KEY(station_id)
)"""
with engine.connect() as con:
con.execute(text(create_table_query))
数据插入
使用Pandas的to_sql方法将DataFrame数据插入数据库:
df.to_sql(
name=table_name,
schema=db_name,
con=engine,
if_exists="append",
index=False
)
数据查询
从数据库中读取数据同样简单:
query = text(f"SELECT * FROM {db_name}.{table_name}")
with engine.connect() as con:
df2 = pd.read_sql(query, con=con)
df2.head(5)
数据导出
可以将查询结果导出为Excel或CSV格式:
df2.to_excel("citibike.xlsx")
df2.to_csv("citibike.csv")
清理工作
使用完毕后删除临时表:
drop_table_query = f"DROP TABLE IF EXISTS {db_name}.{table_name}"
with engine.connect() as con:
con.execute(text(drop_table_query))
扩展练习
尝试获取并存储站点的实时状态数据,并建立与站点基本信息表的外键关系:
url_status = 'https://gbfs.citibikenyc.com/gbfs/en/station_status.json'
# 获取数据并处理
# 创建状态表
# 建立外键关系
总结
通过本案例,我们学习了:
- 如何使用Pandas处理API获取的JSON数据
- 如何配置MySQL数据库连接
- 如何定义数据库表结构
- 使用Pandas的
to_sql方法高效插入数据 - 使用
read_sql方法从数据库读取数据 - 数据导出和清理的最佳实践
这种方法特别适合数据分析师和数据工程师,可以大大简化数据存储和读取的流程,提高工作效率。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
183
13
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
128
105
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.86 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
732
70