使用Pandas将数据高效插入MySQL数据库 - ipeirotis/dealing_with_data项目实践
2025-06-04 06:11:09作者:农烁颖Land
前言
在数据分析和处理过程中,我们经常需要将处理好的数据存储到数据库中以便后续使用。Python的Pandas库提供了非常便捷的方法来实现这一需求。本文将通过ipeirotis/dealing_with_data项目中的一个实际案例,详细介绍如何使用Pandas将数据高效地插入MySQL数据库。
准备工作
在开始之前,我们需要安装必要的Python库:
!pip install -U -q PyMySQL sqlalchemy
这两个库分别用于:
- PyMySQL:Python连接MySQL数据库的驱动
- SQLAlchemy:Python SQL工具包和ORM框架
获取数据源
本案例使用纽约市Citibike共享单车系统的公开API作为数据源。我们主要关注两个API端点:
# 站点基本信息(相对稳定)
url_stations = "https://gbfs.citibikenyc.com/gbfs/en/station_information.json"
# 站点实时状态(动态变化)
url_status = "https://gbfs.citibikenyc.com/gbfs/en/station_status.json"
首先获取站点基本信息:
import requests
results = requests.get(url_stations).json()
data = results["data"]["stations"]
数据处理与DataFrame创建
将获取的JSON数据转换为Pandas DataFrame:
import pandas as pd
df = pd.DataFrame(data)
查看数据前5行:
df.head(5)
由于原始数据中包含一些不适合直接存入数据库的字段(如包含多个值的列表),我们需要进行清理:
df.drop(
["rental_methods", "eightd_station_services", "rental_uris"],
axis="columns",
inplace=True,
)
数据库连接配置
使用SQLAlchemy创建数据库连接引擎:
import sqlalchemy
from sqlalchemy import create_engine, text
conn_string = "mysql+pymysql://{user}:{password}@{host}/".format(
host="db.ipeirotis.org", user="student", password="dwdstudent2015"
)
engine = create_engine(conn_string)
数据库和表创建
创建数据库
db_name = "public"
create_db_query = (
f"CREATE DATABASE IF NOT EXISTS {db_name} DEFAULT CHARACTER SET 'utf8'"
)
with engine.connect() as con:
con.execute(text(create_db_query))
con.execute(text(f"USE {db_name}"))
创建表结构
为了避免多人协作时的表名冲突,我们为表名添加随机后缀:
import uuid
suffix = str(uuid.uuid4())[:8]
table_name = f"Stations_{suffix}"
定义表结构:
create_table_query = f"""CREATE TABLE IF NOT EXISTS {db_name}.{table_name}
(legacy_id int,
station_id varchar(100),
region_id int,
external_id varchar(50),
lat float,
lon float,
short_name varchar(10),
name varchar(250),
station_type varchar(10),
capacity int,
electric_bike_surcharge_waiver bool,
eightd_has_key_dispenser bool,
has_kiosk bool,
PRIMARY KEY(station_id)
)"""
with engine.connect() as con:
con.execute(text(create_table_query))
数据插入
使用Pandas的to_sql
方法将DataFrame数据插入数据库:
df.to_sql(
name=table_name,
schema=db_name,
con=engine,
if_exists="append",
index=False
)
数据查询
从数据库中读取数据同样简单:
query = text(f"SELECT * FROM {db_name}.{table_name}")
with engine.connect() as con:
df2 = pd.read_sql(query, con=con)
df2.head(5)
数据导出
可以将查询结果导出为Excel或CSV格式:
df2.to_excel("citibike.xlsx")
df2.to_csv("citibike.csv")
清理工作
使用完毕后删除临时表:
drop_table_query = f"DROP TABLE IF EXISTS {db_name}.{table_name}"
with engine.connect() as con:
con.execute(text(drop_table_query))
扩展练习
尝试获取并存储站点的实时状态数据,并建立与站点基本信息表的外键关系:
url_status = 'https://gbfs.citibikenyc.com/gbfs/en/station_status.json'
# 获取数据并处理
# 创建状态表
# 建立外键关系
总结
通过本案例,我们学习了:
- 如何使用Pandas处理API获取的JSON数据
- 如何配置MySQL数据库连接
- 如何定义数据库表结构
- 使用Pandas的
to_sql
方法高效插入数据 - 使用
read_sql
方法从数据库读取数据 - 数据导出和清理的最佳实践
这种方法特别适合数据分析师和数据工程师,可以大大简化数据存储和读取的流程,提高工作效率。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0378- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
328
377

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
28
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58