sigopt-examples 的安装和配置教程
项目基础介绍
sigopt-examples 是一个开源项目,旨在展示如何使用 SigOpt 进行机器学习模型的超参数优化。该项目提供了多个示例,涵盖了在不同的机器学习环境中进行模型调优的任务。SigOpt 通过使用最新的贝叶斯超参数优化研究,帮助数据科学家和机器学习工程师更高效地构建模型。
主要编程语言
该项目主要使用 Python 编程语言,同时也包含了一些 Jupyter Notebook 文件,方便用户通过交互式的方式运行示例和实验。
关键技术和框架
项目使用了 SigOpt 的优化技术,这是一种基于贝叶斯理论的超参数优化方法。此外,项目中的示例可能涉及到多种机器学习框架和技术,例如 TensorFlow、Keras、XGBoost 等。
准备工作
在开始安装和配置 sigopt-examples 之前,请确保您的计算机满足以下要求:
- 操作系统:Linux 或 Mac OS X
- Python:建议使用 Python 3.x
- pip:Python 包管理器,用于安装所需的库
- Git:用于克隆和更新项目代码
安装步骤
-
克隆项目仓库
打开命令行工具,执行以下命令以克隆项目:
git clone https://github.com/sigopt/sigopt-examples.git cd sigopt-examples -
安装依赖库
在项目目录中,使用 pip 安装 requirements.txt 文件中列出的所有依赖库:
pip install -r requirements.txt如果您的系统中没有安装所有必要的依赖库,这一步骤将自动下载和安装它们。
-
设置 SigOpt API 密钥
为了使用 SigOpt 的优化服务,您需要一个 API 密钥。您可以在 SigOpt 官网上注册以获取一个免费密钥。
在项目目录中,创建一个名为
.sigopt.yaml的文件,并添加以下内容,将<your_api_key>替换为您从 SigOpt 获取的 API 密钥:api_key: <your_api_key> -
运行示例
每个 example 目录下都有一个
README.md文件,其中包含了特定示例的详细设置和运行步骤。按照README.md文件中的指南,您可以运行不同的示例来学习如何使用 SigOpt 进行超参数优化。
通过以上步骤,您应该能够成功安装和配置 sigopt-examples 项目,并开始使用其中提供的示例进行机器学习模型的超参数优化。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00