sigopt-examples 的安装和配置教程
项目基础介绍
sigopt-examples 是一个开源项目,旨在展示如何使用 SigOpt 进行机器学习模型的超参数优化。该项目提供了多个示例,涵盖了在不同的机器学习环境中进行模型调优的任务。SigOpt 通过使用最新的贝叶斯超参数优化研究,帮助数据科学家和机器学习工程师更高效地构建模型。
主要编程语言
该项目主要使用 Python 编程语言,同时也包含了一些 Jupyter Notebook 文件,方便用户通过交互式的方式运行示例和实验。
关键技术和框架
项目使用了 SigOpt 的优化技术,这是一种基于贝叶斯理论的超参数优化方法。此外,项目中的示例可能涉及到多种机器学习框架和技术,例如 TensorFlow、Keras、XGBoost 等。
准备工作
在开始安装和配置 sigopt-examples 之前,请确保您的计算机满足以下要求:
- 操作系统:Linux 或 Mac OS X
- Python:建议使用 Python 3.x
- pip:Python 包管理器,用于安装所需的库
- Git:用于克隆和更新项目代码
安装步骤
-
克隆项目仓库
打开命令行工具,执行以下命令以克隆项目:
git clone https://github.com/sigopt/sigopt-examples.git cd sigopt-examples -
安装依赖库
在项目目录中,使用 pip 安装 requirements.txt 文件中列出的所有依赖库:
pip install -r requirements.txt如果您的系统中没有安装所有必要的依赖库,这一步骤将自动下载和安装它们。
-
设置 SigOpt API 密钥
为了使用 SigOpt 的优化服务,您需要一个 API 密钥。您可以在 SigOpt 官网上注册以获取一个免费密钥。
在项目目录中,创建一个名为
.sigopt.yaml的文件,并添加以下内容,将<your_api_key>替换为您从 SigOpt 获取的 API 密钥:api_key: <your_api_key> -
运行示例
每个 example 目录下都有一个
README.md文件,其中包含了特定示例的详细设置和运行步骤。按照README.md文件中的指南,您可以运行不同的示例来学习如何使用 SigOpt 进行超参数优化。
通过以上步骤,您应该能够成功安装和配置 sigopt-examples 项目,并开始使用其中提供的示例进行机器学习模型的超参数优化。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00