Ragas项目中AspectCritic评估指标的正确使用方法
2025-05-26 09:06:32作者:明树来
概述
在Ragas项目(一个用于评估LLM生成内容的开源工具)中,AspectCritic是一个重要的评估指标类,用于对模型响应进行多维度评分。本文将详细介绍如何正确使用该功能,并解释常见的导入错误解决方案。
问题背景
许多开发者在尝试使用Ragas的评估功能时,会遇到无法导入AspectCriticWithReference
类的问题。这实际上是文档与代码实现不一致导致的误解。正确的做法是使用AspectCritic
类进行导入和实例化。
正确实现方式
以下是使用AspectCritic评估LLM响应的标准代码示例:
from ragas.dataset_schema import SingleTurnSample
from ragas.metrics import AspectCritic
from ragas import evaluate
from ragas.dataset_schema import EvaluationDataset
from langchain_openai import ChatOpenAI
from ragas.llms import LangchainLLMWrapper
# 创建评估样本
sample = SingleTurnSample(
user_input="埃菲尔铁塔位于哪里?",
response="埃菲尔铁塔位于巴黎。",
)
# 初始化评估LLM
evaluator_llm = LangchainLLMWrapper(ChatOpenAI(model="gpt-4"))
# 创建评估器
scorer = AspectCritic(
name="correctness", # 评估维度名称
definition="回答是否与事实相符?", # 评估标准定义
llm=evaluator_llm # 使用的评估模型
)
# 执行评估
result = evaluate(dataset=EvaluationDataset([sample]), metrics=[scorer])
print(result)
关键点解析
-
类名选择:必须使用
AspectCritic
而非AspectCriticWithReference
-
评估流程:
- 创建评估样本(SingleTurnSample)
- 初始化评估模型(支持多种LLM)
- 配置评估器参数
- 执行评估并获取结果
-
模型选择:支持GPT-4、GPT-4o等多种模型,但需注意不同模型可能产生不同的解析结果
评估结果分析
评估结果会返回一个包含评分和详细分析的数据结构,典型输出如下:
{'correctness': 1.0000}
对于更复杂的评估场景,可以扩展多个评估维度,创建多个AspectCritic实例分别评估响应的事实准确性、完整性、流畅性等不同方面。
最佳实践建议
- 对于中文评估,建议使用支持中文较好的评估模型
- 复杂的评估场景应考虑组合多个评估指标
- 生产环境中建议对评估结果进行二次验证
- 评估模型的选择应考虑成本与效果的平衡
通过正确使用Ragas的AspectCritic功能,开发者可以构建强大的LLM响应质量评估系统,为模型优化提供数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile08
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中sr-only类与position: absolute的正确使用2 freeCodeCamp CSS颜色测验第二组题目开发指南3 freeCodeCamp全栈开发课程中回文检测器项目的正则表达式教学优化4 freeCodeCamp全栈开发课程中Navbar组件构建的优化建议5 freeCodeCamp全栈开发课程中关于HTML可访问性讲座的字幕修正6 freeCodeCamp课程中"构建电子邮件掩码器"项目文档优化建议7 freeCodeCamp课程中"午餐选择器"实验的文档修正说明8 freeCodeCamp猫照片应用教程中HTML布尔属性的教学优化建议9 freeCodeCamp国际化组件中未翻译内容的技术分析10 freeCodeCamp 个人资料页时间线分页按钮优化方案
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0