BTS 项目使用教程
2026-01-22 04:09:05作者:凤尚柏Louis
1. 项目介绍
BTS(From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation)是一个用于单目深度估计的开源项目。该项目通过多尺度局部平面引导的方法,从大到小逐步细化深度估计,从而提高深度估计的准确性。BTS 项目提供了 TensorFlow 和 PyTorch 两种实现方式,适用于不同的深度学习框架用户。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下依赖:
- Python 3.x
- TensorFlow 或 PyTorch
- Git
2.2 克隆项目
首先,克隆 BTS 项目到本地:
git clone https://github.com/cogaplex-bts/bts.git
cd bts
2.3 数据准备
2.3.1 准备 NYU Depth V2 测试集
cd ~/workspace/bts/utils
wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
python extract_official_train_test_set_from_mat.py nyu_depth_v2_labeled.mat splits.mat /path/to/dataset/nyu_depth_v2/official_splits/
2.3.2 准备 KITTI 官方地面真值深度图
下载 KITTI 地面真值深度图并解压:
cd ~/workspace/dataset
mkdir kitti_dataset && cd kitti_dataset
mv ~/Downloads/data_depth_annotated.zip .
unzip data_depth_annotated.zip
2.4 运行模型
根据你的选择,选择 TensorFlow 或 PyTorch 实现:
2.4.1 TensorFlow 实现
cd ~/workspace/bts/tensorflow
python train.py --dataset_dir /path/to/dataset --checkpoint_path /path/to/checkpoint
2.4.2 PyTorch 实现
cd ~/workspace/bts/pytorch
python train.py --dataset_dir /path/to/dataset --checkpoint_path /path/to/checkpoint
3. 应用案例和最佳实践
3.1 应用案例
BTS 项目可以应用于自动驾驶、机器人导航、增强现实等领域。通过单目摄像头获取深度信息,可以帮助车辆或机器人更好地理解周围环境,从而做出更智能的决策。
3.2 最佳实践
- 数据预处理:确保输入数据的质量和一致性,可以显著提高模型的性能。
- 模型调优:根据具体应用场景调整模型参数,如学习率、批量大小等。
- 多尺度训练:利用多尺度训练方法,可以提高模型对不同尺度物体的深度估计能力。
4. 典型生态项目
- TensorFlow:BTS 项目的 TensorFlow 实现依赖于 TensorFlow 框架,适合熟悉 TensorFlow 的用户。
- PyTorch:BTS 项目的 PyTorch 实现依赖于 PyTorch 框架,适合熟悉 PyTorch 的用户。
- KITTI 数据集:BTS 项目使用了 KITTI 数据集进行训练和测试,KITTI 数据集是自动驾驶领域常用的数据集之一。
- NYU Depth V2 数据集:BTS 项目还使用了 NYU Depth V2 数据集,该数据集包含了室内场景的深度信息。
通过以上步骤,你可以快速启动并使用 BTS 项目进行单目深度估计。希望这篇教程对你有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248