BTS 项目使用教程
2026-01-22 04:09:05作者:凤尚柏Louis
1. 项目介绍
BTS(From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation)是一个用于单目深度估计的开源项目。该项目通过多尺度局部平面引导的方法,从大到小逐步细化深度估计,从而提高深度估计的准确性。BTS 项目提供了 TensorFlow 和 PyTorch 两种实现方式,适用于不同的深度学习框架用户。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下依赖:
- Python 3.x
- TensorFlow 或 PyTorch
- Git
2.2 克隆项目
首先,克隆 BTS 项目到本地:
git clone https://github.com/cogaplex-bts/bts.git
cd bts
2.3 数据准备
2.3.1 准备 NYU Depth V2 测试集
cd ~/workspace/bts/utils
wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
python extract_official_train_test_set_from_mat.py nyu_depth_v2_labeled.mat splits.mat /path/to/dataset/nyu_depth_v2/official_splits/
2.3.2 准备 KITTI 官方地面真值深度图
下载 KITTI 地面真值深度图并解压:
cd ~/workspace/dataset
mkdir kitti_dataset && cd kitti_dataset
mv ~/Downloads/data_depth_annotated.zip .
unzip data_depth_annotated.zip
2.4 运行模型
根据你的选择,选择 TensorFlow 或 PyTorch 实现:
2.4.1 TensorFlow 实现
cd ~/workspace/bts/tensorflow
python train.py --dataset_dir /path/to/dataset --checkpoint_path /path/to/checkpoint
2.4.2 PyTorch 实现
cd ~/workspace/bts/pytorch
python train.py --dataset_dir /path/to/dataset --checkpoint_path /path/to/checkpoint
3. 应用案例和最佳实践
3.1 应用案例
BTS 项目可以应用于自动驾驶、机器人导航、增强现实等领域。通过单目摄像头获取深度信息,可以帮助车辆或机器人更好地理解周围环境,从而做出更智能的决策。
3.2 最佳实践
- 数据预处理:确保输入数据的质量和一致性,可以显著提高模型的性能。
- 模型调优:根据具体应用场景调整模型参数,如学习率、批量大小等。
- 多尺度训练:利用多尺度训练方法,可以提高模型对不同尺度物体的深度估计能力。
4. 典型生态项目
- TensorFlow:BTS 项目的 TensorFlow 实现依赖于 TensorFlow 框架,适合熟悉 TensorFlow 的用户。
- PyTorch:BTS 项目的 PyTorch 实现依赖于 PyTorch 框架,适合熟悉 PyTorch 的用户。
- KITTI 数据集:BTS 项目使用了 KITTI 数据集进行训练和测试,KITTI 数据集是自动驾驶领域常用的数据集之一。
- NYU Depth V2 数据集:BTS 项目还使用了 NYU Depth V2 数据集,该数据集包含了室内场景的深度信息。
通过以上步骤,你可以快速启动并使用 BTS 项目进行单目深度估计。希望这篇教程对你有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
480
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882