TiKV中频繁删除表导致CDC增量扫描CPU使用率显著上升问题解析
问题背景
在TiKV分布式存储引擎中,当用户频繁执行表或分区的创建和删除操作时,可能会观察到CDC(变更数据捕获)增量扫描的CPU使用率异常升高。这种现象在TiKV的多个版本中都有出现,包括v6.5.x、v7.1.x、v7.5.x和v8.1.x系列。
问题现象
当系统中有大量表或分区的创建和删除操作时,CDC组件在进行增量数据扫描时会表现出异常高的CPU使用率。通过性能分析工具可以发现,这些CPU资源主要消耗在加载旧值(old value)的操作上。
根本原因分析
这个问题的根源在于TiKV内部的数据清理机制与CDC扫描机制的交互方式:
-
数据清理机制:TiKV采用两种方式清理被删除表或分区的数据:
- 通过DeleteFilesInRange操作
- 通过Scan & Delete组合操作
-
RocksDB Tombstone问题:这种混合清理策略会在被删除的范围内留下连续的RocksDB Tombstone标记。这些标记可能被其他有效表数据的Region所覆盖。
-
CDC扫描行为:增量扫描会扫描整个Region而非仅观察的范围。当遇到连续的Tombstone标记时,RocksDB迭代器的Next操作会变得非常昂贵,导致扫描过程可能需要数小时才能完成。
技术细节
在底层实现上,TiKV的CDC组件为了优化性能,会使用RocksDBIter::Next而非RocksDBIter::Seek来避免昂贵的Seek操作。然而,当遇到大量连续的Tombstone标记时,Next操作反而会成为性能瓶颈:
- 每个Tombstone标记都需要被处理
- 连续的Tombstone导致Next操作需要遍历大量无效数据
- 这种遍历消耗大量CPU资源
解决方案
针对不同版本的TiKV,解决方案有所不同:
-
v7.1.x和v7.5.x版本:
- 在加载旧值前先按观察范围过滤事件
- 避免处理不必要的数据范围
-
v6.5.x版本:
- 需要先回port相关基础优化
- 然后应用相同的修复方案
修复效果
通过优化CDC的扫描策略,特别是改进了在存在大量Tombstone情况下的处理方式,这个问题得到了显著改善。修复后的版本包括:
- v7.1.6
- v7.5.5
- v8.1.3
- v8.5.0
对于v6.5.x版本,由于代码基础差异较大,未进行相应的修复。
最佳实践建议
对于使用TiKV CDC功能的用户,建议:
- 避免在生产环境中频繁创建和删除大型表或分区
- 定期维护数据库,合并碎片化的数据范围
- 及时升级到已修复的版本
- 监控CDC组件的CPU使用率,及时发现潜在问题
通过理解这一问题的本质和解决方案,用户可以更好地规划数据库操作模式,确保TiKV集群的稳定高效运行。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00