TiKV CDC 跳过 Lightning 物理模式导入数据的实现机制
背景介绍
在分布式数据库 TiKV 的生态中,CDC (Change Data Capture) 是一个重要的组件,用于捕获数据库的变更事件并实时同步到下游系统。而 Lightning 则是 TiDB 生态中的快速数据导入工具,支持逻辑模式和物理模式两种数据导入方式。
问题场景
当使用 Lightning 的物理模式导入数据时,这些数据变更会被 TiKV CDC 捕获并同步到下游。然而在某些场景下,用户希望 CDC 能够识别并跳过由 Lightning 物理导入的数据,只同步正常的业务数据变更。
技术实现方案
TiKV 通过事务标记机制实现了这一需求。具体来说,Lightning 在物理导入模式下会设置事务的 txn_source
字段的第 17 位作为特殊标记。这个标记位被 TiKV CDC 组件识别后,可以决定是否跳过该行数据的同步。
实现细节
-
事务标记机制:TiKV 的事务系统支持在事务中携带额外的元信息,
txn_source
就是这样一个字段,它的第 17 位被专门保留用于标识物理导入的数据。 -
CDC 过滤逻辑:CDC 组件在捕获变更事件时,会检查事务的
txn_source
字段。如果发现第 17 位被置位,则判定该行数据来自 Lightning 物理导入,可以选择跳过不同步。 -
性能考量:这种基于位运算的过滤方式非常高效,几乎不会对 CDC 的性能产生影响,因为:
- 位运算本身是 CPU 原生支持的高效操作
- 过滤判断发生在事务处理早期,可以尽早终止不必要的处理流程
应用价值
这一机制的实现带来了以下好处:
-
数据同步更精准:用户可以精确控制哪些数据需要同步到下游,避免物理导入的中间数据污染下游系统。
-
资源利用率提升:减少了不必要的数据同步,节省了网络带宽和下游系统的处理资源。
-
系统集成更灵活:为 ETL 流程提供了更细粒度的控制能力,使得数据导入和同步可以更好地协同工作。
总结
TiKV 通过巧妙利用事务标记位的方式,实现了 CDC 对 Lightning 物理导入数据的识别和过滤。这一设计体现了 TiKV 生态系统中各组件间的高度协同性,以及对实际应用场景的深入理解。这种基于标记位的轻量级过滤机制,既保证了功能实现,又最大程度地降低了对系统性能的影响,是分布式数据库设计中值得借鉴的优秀实践。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









