TiKV CDC 跳过 Lightning 物理模式导入数据的实现机制
背景介绍
在分布式数据库 TiKV 的生态中,CDC (Change Data Capture) 是一个重要的组件,用于捕获数据库的变更事件并实时同步到下游系统。而 Lightning 则是 TiDB 生态中的快速数据导入工具,支持逻辑模式和物理模式两种数据导入方式。
问题场景
当使用 Lightning 的物理模式导入数据时,这些数据变更会被 TiKV CDC 捕获并同步到下游。然而在某些场景下,用户希望 CDC 能够识别并跳过由 Lightning 物理导入的数据,只同步正常的业务数据变更。
技术实现方案
TiKV 通过事务标记机制实现了这一需求。具体来说,Lightning 在物理导入模式下会设置事务的 txn_source 字段的第 17 位作为特殊标记。这个标记位被 TiKV CDC 组件识别后,可以决定是否跳过该行数据的同步。
实现细节
-
事务标记机制:TiKV 的事务系统支持在事务中携带额外的元信息,
txn_source就是这样一个字段,它的第 17 位被专门保留用于标识物理导入的数据。 -
CDC 过滤逻辑:CDC 组件在捕获变更事件时,会检查事务的
txn_source字段。如果发现第 17 位被置位,则判定该行数据来自 Lightning 物理导入,可以选择跳过不同步。 -
性能考量:这种基于位运算的过滤方式非常高效,几乎不会对 CDC 的性能产生影响,因为:
- 位运算本身是 CPU 原生支持的高效操作
- 过滤判断发生在事务处理早期,可以尽早终止不必要的处理流程
应用价值
这一机制的实现带来了以下好处:
-
数据同步更精准:用户可以精确控制哪些数据需要同步到下游,避免物理导入的中间数据污染下游系统。
-
资源利用率提升:减少了不必要的数据同步,节省了网络带宽和下游系统的处理资源。
-
系统集成更灵活:为 ETL 流程提供了更细粒度的控制能力,使得数据导入和同步可以更好地协同工作。
总结
TiKV 通过巧妙利用事务标记位的方式,实现了 CDC 对 Lightning 物理导入数据的识别和过滤。这一设计体现了 TiKV 生态系统中各组件间的高度协同性,以及对实际应用场景的深入理解。这种基于标记位的轻量级过滤机制,既保证了功能实现,又最大程度地降低了对系统性能的影响,是分布式数据库设计中值得借鉴的优秀实践。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00