TiKV CDC 跳过 Lightning 物理模式导入数据的实现机制
背景介绍
在分布式数据库 TiKV 的生态中,CDC (Change Data Capture) 是一个重要的组件,用于捕获数据库的变更事件并实时同步到下游系统。而 Lightning 则是 TiDB 生态中的快速数据导入工具,支持逻辑模式和物理模式两种数据导入方式。
问题场景
当使用 Lightning 的物理模式导入数据时,这些数据变更会被 TiKV CDC 捕获并同步到下游。然而在某些场景下,用户希望 CDC 能够识别并跳过由 Lightning 物理导入的数据,只同步正常的业务数据变更。
技术实现方案
TiKV 通过事务标记机制实现了这一需求。具体来说,Lightning 在物理导入模式下会设置事务的 txn_source 字段的第 17 位作为特殊标记。这个标记位被 TiKV CDC 组件识别后,可以决定是否跳过该行数据的同步。
实现细节
-
事务标记机制:TiKV 的事务系统支持在事务中携带额外的元信息,
txn_source就是这样一个字段,它的第 17 位被专门保留用于标识物理导入的数据。 -
CDC 过滤逻辑:CDC 组件在捕获变更事件时,会检查事务的
txn_source字段。如果发现第 17 位被置位,则判定该行数据来自 Lightning 物理导入,可以选择跳过不同步。 -
性能考量:这种基于位运算的过滤方式非常高效,几乎不会对 CDC 的性能产生影响,因为:
- 位运算本身是 CPU 原生支持的高效操作
- 过滤判断发生在事务处理早期,可以尽早终止不必要的处理流程
应用价值
这一机制的实现带来了以下好处:
-
数据同步更精准:用户可以精确控制哪些数据需要同步到下游,避免物理导入的中间数据污染下游系统。
-
资源利用率提升:减少了不必要的数据同步,节省了网络带宽和下游系统的处理资源。
-
系统集成更灵活:为 ETL 流程提供了更细粒度的控制能力,使得数据导入和同步可以更好地协同工作。
总结
TiKV 通过巧妙利用事务标记位的方式,实现了 CDC 对 Lightning 物理导入数据的识别和过滤。这一设计体现了 TiKV 生态系统中各组件间的高度协同性,以及对实际应用场景的深入理解。这种基于标记位的轻量级过滤机制,既保证了功能实现,又最大程度地降低了对系统性能的影响,是分布式数据库设计中值得借鉴的优秀实践。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00