在segmentation_models.pytorch中使用CPU设备加载预训练模型的注意事项
2025-05-22 10:15:11作者:卓炯娓
在使用segmentation_models.pytorch(简称SMP)构建UNet模型时,开发者可能会遇到一个常见问题:当尝试在仅支持CPU的设备上加载某些预训练编码器时,系统会抛出CUDA设备相关的运行时错误。本文将深入分析这一问题的成因,并提供专业解决方案。
问题现象分析
当开发者使用以下代码在无GPU环境中创建UNet模型时:
smp.Unet(classes=1, encoder_weights='imagenet', encoder_name='timm-res2net50_26w_4s')
系统会报错提示无法在CUDA设备上反序列化对象,这是因为部分预训练模型的权重文件是在GPU环境下保存的。值得注意的是,直接使用timm库创建相同模型却能正常工作:
timm.create_model('res2net50_26w_4s', pretrained=True)
技术背景解析
这个问题源于PyTorch模型序列化的一个特性:当模型在GPU上训练并保存时,其权重会带有CUDA设备的标记。在加载时,如果当前环境没有GPU可用,就需要显式指定映射到CPU设备。
SMP库中的编码器前缀存在两种形式:
timm-前缀:早期通过手动移植timm模型实现tu-前缀:直接调用timm库的原生API实现
解决方案与实践建议
对于CPU-only环境,推荐采用以下两种解决方案:
- 使用tu-前缀编码器(推荐方案)
smp.Unet(classes=1, encoder_weights='imagenet', encoder_name='tu-res2net50_26w_4s')
这种方法直接利用timm库的加载机制,能自动处理设备兼容性问题。
- 手动映射设备(适用于特殊情况)
model = smp.Unet(classes=1, encoder_weights=None, encoder_name='timm-res2net50_26w_4s')
state_dict = torch.load(weights_path, map_location='cpu')
model.encoder.load_state_dict(state_dict)
架构演进说明
值得注意的是,SMP库正在逐步淘汰timm-前缀的编码器实现,转向更稳定的tu-前缀实现。这种架构演进带来了以下优势:
- 更好的设备兼容性
- 更直接的版本同步
- 更少的维护开销
最佳实践建议
- 在新项目中优先使用
tu-前缀编码器 - 对于现有项目,建议逐步迁移到
tu-前缀实现 - 在跨平台部署时,始终考虑设备兼容性问题
- 对于生产环境,建议明确指定设备映射策略
通过理解这些技术细节,开发者可以更从容地处理模型加载过程中的设备兼容性问题,确保项目在不同硬件环境中的稳定运行。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248