在segmentation_models.pytorch中使用CPU设备加载预训练模型的注意事项
2025-05-22 18:47:07作者:卓炯娓
在使用segmentation_models.pytorch(简称SMP)构建UNet模型时,开发者可能会遇到一个常见问题:当尝试在仅支持CPU的设备上加载某些预训练编码器时,系统会抛出CUDA设备相关的运行时错误。本文将深入分析这一问题的成因,并提供专业解决方案。
问题现象分析
当开发者使用以下代码在无GPU环境中创建UNet模型时:
smp.Unet(classes=1, encoder_weights='imagenet', encoder_name='timm-res2net50_26w_4s')
系统会报错提示无法在CUDA设备上反序列化对象,这是因为部分预训练模型的权重文件是在GPU环境下保存的。值得注意的是,直接使用timm库创建相同模型却能正常工作:
timm.create_model('res2net50_26w_4s', pretrained=True)
技术背景解析
这个问题源于PyTorch模型序列化的一个特性:当模型在GPU上训练并保存时,其权重会带有CUDA设备的标记。在加载时,如果当前环境没有GPU可用,就需要显式指定映射到CPU设备。
SMP库中的编码器前缀存在两种形式:
timm-前缀:早期通过手动移植timm模型实现tu-前缀:直接调用timm库的原生API实现
解决方案与实践建议
对于CPU-only环境,推荐采用以下两种解决方案:
- 使用tu-前缀编码器(推荐方案)
smp.Unet(classes=1, encoder_weights='imagenet', encoder_name='tu-res2net50_26w_4s')
这种方法直接利用timm库的加载机制,能自动处理设备兼容性问题。
- 手动映射设备(适用于特殊情况)
model = smp.Unet(classes=1, encoder_weights=None, encoder_name='timm-res2net50_26w_4s')
state_dict = torch.load(weights_path, map_location='cpu')
model.encoder.load_state_dict(state_dict)
架构演进说明
值得注意的是,SMP库正在逐步淘汰timm-前缀的编码器实现,转向更稳定的tu-前缀实现。这种架构演进带来了以下优势:
- 更好的设备兼容性
- 更直接的版本同步
- 更少的维护开销
最佳实践建议
- 在新项目中优先使用
tu-前缀编码器 - 对于现有项目,建议逐步迁移到
tu-前缀实现 - 在跨平台部署时,始终考虑设备兼容性问题
- 对于生产环境,建议明确指定设备映射策略
通过理解这些技术细节,开发者可以更从容地处理模型加载过程中的设备兼容性问题,确保项目在不同硬件环境中的稳定运行。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
311
2.72 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
638
242
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
469
Ascend Extension for PyTorch
Python
148
175
暂无简介
Dart
604
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
226
81
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
363
2.99 K
React Native鸿蒙化仓库
JavaScript
236
310