GSplat项目在Tanks&Temples数据集上的优化问题解析
2025-06-28 19:23:32作者:昌雅子Ethen
问题背景
在使用GSplat项目处理Tanks&Temples数据集时,研究人员发现直接运行基准测试脚本会出现优化失败的情况。具体表现为生成的图像质量极差,PSNR仅为9.727,SSIM为0.3667,LPIPS高达0.683,远低于预期效果。
问题分析
经过深入调查,发现问题根源在于相机内参的处理方式。Tanks&Temples数据集中的图像尺寸为980×545,但读取出的主点坐标(cam.cx, cam.cy)却为(979.5, 545.0),这显然存在问题。进一步分析发现:
- 原始3DGS仓库使用视场角(FoV)表示相机内参,而非内参矩阵
- GSplat项目直接读取了COLMAP格式的相机参数,未考虑这种特殊表示方式的差异
- 在原始3DGS实现中,除以2的操作会被抵消,因此能正常工作
解决方案
针对这一问题,需要对相机内参处理进行修正。具体修改是将colmap.py文件中的内参计算方式调整为:
fx, fy, cx, cy = cam.fx / 2, cam.fy / 2, cam.cx / 2, cam.cy / 2
这一修改使得内参计算与原始3DGS实现保持了一致性。
效果验证
应用此修改后,在Tanks&Temples的"train"场景上进行30,000次迭代训练,最终获得了21.964的PSNR值。作为参考,原始3DGS论文中报告该场景的PSNR为21.097,表明修改后的实现不仅解决了问题,还取得了优于原始实现的性能。
技术启示
这一案例揭示了不同3D重建系统间相机参数表示方式的差异可能带来的问题。在实际应用中,特别是在使用不同来源的数据集时,需要特别注意:
- 相机模型的表示方式(内参矩阵vs视场角)
- 坐标系和归一化处理
- 参数传递过程中的尺度变换
理解这些底层细节对于实现稳定可靠的3D高斯溅射系统至关重要。这也提醒开发者在集成不同来源的代码和数据时,需要进行充分验证和适配工作。
结论
通过对相机内参处理的修正,GSplat项目现在能够正确处理Tanks&Temples数据集,并取得优于原始实现的性能表现。这一解决方案不仅解决了特定数据集上的问题,也为处理其他类似数据集提供了参考范例。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660