GSplat项目在Tanks&Temples数据集上的优化问题解析
2025-06-28 12:39:26作者:昌雅子Ethen
问题背景
在使用GSplat项目处理Tanks&Temples数据集时,研究人员发现直接运行基准测试脚本会出现优化失败的情况。具体表现为生成的图像质量极差,PSNR仅为9.727,SSIM为0.3667,LPIPS高达0.683,远低于预期效果。
问题分析
经过深入调查,发现问题根源在于相机内参的处理方式。Tanks&Temples数据集中的图像尺寸为980×545,但读取出的主点坐标(cam.cx, cam.cy)却为(979.5, 545.0),这显然存在问题。进一步分析发现:
- 原始3DGS仓库使用视场角(FoV)表示相机内参,而非内参矩阵
- GSplat项目直接读取了COLMAP格式的相机参数,未考虑这种特殊表示方式的差异
- 在原始3DGS实现中,除以2的操作会被抵消,因此能正常工作
解决方案
针对这一问题,需要对相机内参处理进行修正。具体修改是将colmap.py文件中的内参计算方式调整为:
fx, fy, cx, cy = cam.fx / 2, cam.fy / 2, cam.cx / 2, cam.cy / 2
这一修改使得内参计算与原始3DGS实现保持了一致性。
效果验证
应用此修改后,在Tanks&Temples的"train"场景上进行30,000次迭代训练,最终获得了21.964的PSNR值。作为参考,原始3DGS论文中报告该场景的PSNR为21.097,表明修改后的实现不仅解决了问题,还取得了优于原始实现的性能。
技术启示
这一案例揭示了不同3D重建系统间相机参数表示方式的差异可能带来的问题。在实际应用中,特别是在使用不同来源的数据集时,需要特别注意:
- 相机模型的表示方式(内参矩阵vs视场角)
- 坐标系和归一化处理
- 参数传递过程中的尺度变换
理解这些底层细节对于实现稳定可靠的3D高斯溅射系统至关重要。这也提醒开发者在集成不同来源的代码和数据时,需要进行充分验证和适配工作。
结论
通过对相机内参处理的修正,GSplat项目现在能够正确处理Tanks&Temples数据集,并取得优于原始实现的性能表现。这一解决方案不仅解决了特定数据集上的问题,也为处理其他类似数据集提供了参考范例。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250