SVOX2: Plenoxels 开源项目安装与使用指南
2024-09-22 03:00:18作者:凤尚柏Louis
本指南将引导您了解并使用 SVOX2(Plenoxels)项目,这是一个无需神经网络即可创建辐射场的创新方法。我们将逐步介绍其目录结构、关键的启动文件以及配置文件的解读,帮助您快速上手。
目录结构及介绍
SVOX2 的项目结构精心设计以支持高效开发与研究,以下是主要的目录与文件说明:
- root
environment.yml
: Conda 环境配置文件,用于设置项目所需的所有软件包。LICENSE
: 许可证文件,遵循 BSD-2-Clause 协议。README.md
: 项目简介,包括作者信息、论文链接、数据集下载地址等重要信息。setup.py
: Python 包的安装脚本。opt/
: 实验与优化相关的脚本和配置文件夹。opt/opt.py
: 单个场景训练的主要脚本。opt/render_imgs.py
,render_imgs_circle.py
: 渲染图像或沿螺旋轨迹渲染的脚本。tasks/*json
: 自动调参和评估任务的配置文件。
scripts/
: 辅助工具脚本,如数据处理与转换。src/
: 核心代码库,包含模型实现。examples/
(假设存在,未在引用中明确提及): 示例代码或案例研究。
启动文件介绍
主要启动流程
创建虚拟环境与激活
首先,通过以下命令创建并激活一个名为 plenoxel
的 Conda 环境:
conda env create -f environment.yml
conda activate plenoxel
克隆仓库并安装
克隆项目到本地,并安装必要的依赖项:
git clone https://github.com/sxyu/svox2.git
cd svox2
pip install -e . --verbose
数据集准备
获取所需的 NeRF-Synthetic 和 LLFF 数据集,并放置在相应目录。
启动训练
使用提供的脚本开始训练特定场景,例如 NeRF-Synthetic 场景:
python opt/launch.sh <实验名称> <GPU编号> <数据目录> -c configs/syn.json
配置文件介绍
配置文件位于 configs/
目录下,每种不同类型的场景通常对应不同的配置文件,如 syn.json
, llff.json
, tnt.json
。这些.json
文件包含了训练过程的关键参数,比如学习率、迭代次数、数据预处理选项等。例如:
- syn.json: 针对合成数据场景的配置,定义了学习速率、优化器设置、批处理大小等。
- llff.json: 针对具有前向拍摄特点的数据集的配置,可能包含视角角度、数据增强策略等特定调整。
- tnt.json: 特别针对"Tanks and Temples"数据集的配置,可能包含场景特有的优化参数。
每个配置文件是项目定制化运行的核心,允许用户微调以适应不同的数据和计算需求。理解这些配置参数对于优化实验结果至关重要。
以上内容构成了一份基本的SVOX2项目指导,提供了快速启动项目、理解其结构与配置的框架。在实际操作过程中,详细阅读项目中的具体文档和示例仍然是获得最佳实践的关键。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44