SVOX2: Plenoxels 开源项目安装与使用指南
2024-09-22 13:46:36作者:凤尚柏Louis
本指南将引导您了解并使用 SVOX2(Plenoxels)项目,这是一个无需神经网络即可创建辐射场的创新方法。我们将逐步介绍其目录结构、关键的启动文件以及配置文件的解读,帮助您快速上手。
目录结构及介绍
SVOX2 的项目结构精心设计以支持高效开发与研究,以下是主要的目录与文件说明:
- root
environment.yml: Conda 环境配置文件,用于设置项目所需的所有软件包。LICENSE: 许可证文件,遵循 BSD-2-Clause 协议。README.md: 项目简介,包括作者信息、论文链接、数据集下载地址等重要信息。setup.py: Python 包的安装脚本。opt/: 实验与优化相关的脚本和配置文件夹。opt/opt.py: 单个场景训练的主要脚本。opt/render_imgs.py,render_imgs_circle.py: 渲染图像或沿螺旋轨迹渲染的脚本。tasks/*json: 自动调参和评估任务的配置文件。
scripts/: 辅助工具脚本,如数据处理与转换。src/: 核心代码库,包含模型实现。examples/(假设存在,未在引用中明确提及): 示例代码或案例研究。
启动文件介绍
主要启动流程
创建虚拟环境与激活
首先,通过以下命令创建并激活一个名为 plenoxel 的 Conda 环境:
conda env create -f environment.yml
conda activate plenoxel
克隆仓库并安装
克隆项目到本地,并安装必要的依赖项:
git clone https://github.com/sxyu/svox2.git
cd svox2
pip install -e . --verbose
数据集准备
获取所需的 NeRF-Synthetic 和 LLFF 数据集,并放置在相应目录。
启动训练
使用提供的脚本开始训练特定场景,例如 NeRF-Synthetic 场景:
python opt/launch.sh <实验名称> <GPU编号> <数据目录> -c configs/syn.json
配置文件介绍
配置文件位于 configs/ 目录下,每种不同类型的场景通常对应不同的配置文件,如 syn.json, llff.json, tnt.json。这些.json文件包含了训练过程的关键参数,比如学习率、迭代次数、数据预处理选项等。例如:
- syn.json: 针对合成数据场景的配置,定义了学习速率、优化器设置、批处理大小等。
- llff.json: 针对具有前向拍摄特点的数据集的配置,可能包含视角角度、数据增强策略等特定调整。
- tnt.json: 特别针对"Tanks and Temples"数据集的配置,可能包含场景特有的优化参数。
每个配置文件是项目定制化运行的核心,允许用户微调以适应不同的数据和计算需求。理解这些配置参数对于优化实验结果至关重要。
以上内容构成了一份基本的SVOX2项目指导,提供了快速启动项目、理解其结构与配置的框架。在实际操作过程中,详细阅读项目中的具体文档和示例仍然是获得最佳实践的关键。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492