SVOX2: Plenoxels 开源项目安装与使用指南
2024-09-22 21:31:27作者:凤尚柏Louis
本指南将引导您了解并使用 SVOX2(Plenoxels)项目,这是一个无需神经网络即可创建辐射场的创新方法。我们将逐步介绍其目录结构、关键的启动文件以及配置文件的解读,帮助您快速上手。
目录结构及介绍
SVOX2 的项目结构精心设计以支持高效开发与研究,以下是主要的目录与文件说明:
- root
environment.yml: Conda 环境配置文件,用于设置项目所需的所有软件包。LICENSE: 许可证文件,遵循 BSD-2-Clause 协议。README.md: 项目简介,包括作者信息、论文链接、数据集下载地址等重要信息。setup.py: Python 包的安装脚本。opt/: 实验与优化相关的脚本和配置文件夹。opt/opt.py: 单个场景训练的主要脚本。opt/render_imgs.py,render_imgs_circle.py: 渲染图像或沿螺旋轨迹渲染的脚本。tasks/*json: 自动调参和评估任务的配置文件。
scripts/: 辅助工具脚本,如数据处理与转换。src/: 核心代码库,包含模型实现。examples/(假设存在,未在引用中明确提及): 示例代码或案例研究。
启动文件介绍
主要启动流程
创建虚拟环境与激活
首先,通过以下命令创建并激活一个名为 plenoxel 的 Conda 环境:
conda env create -f environment.yml
conda activate plenoxel
克隆仓库并安装
克隆项目到本地,并安装必要的依赖项:
git clone https://github.com/sxyu/svox2.git
cd svox2
pip install -e . --verbose
数据集准备
获取所需的 NeRF-Synthetic 和 LLFF 数据集,并放置在相应目录。
启动训练
使用提供的脚本开始训练特定场景,例如 NeRF-Synthetic 场景:
python opt/launch.sh <实验名称> <GPU编号> <数据目录> -c configs/syn.json
配置文件介绍
配置文件位于 configs/ 目录下,每种不同类型的场景通常对应不同的配置文件,如 syn.json, llff.json, tnt.json。这些.json文件包含了训练过程的关键参数,比如学习率、迭代次数、数据预处理选项等。例如:
- syn.json: 针对合成数据场景的配置,定义了学习速率、优化器设置、批处理大小等。
- llff.json: 针对具有前向拍摄特点的数据集的配置,可能包含视角角度、数据增强策略等特定调整。
- tnt.json: 特别针对"Tanks and Temples"数据集的配置,可能包含场景特有的优化参数。
每个配置文件是项目定制化运行的核心,允许用户微调以适应不同的数据和计算需求。理解这些配置参数对于优化实验结果至关重要。
以上内容构成了一份基本的SVOX2项目指导,提供了快速启动项目、理解其结构与配置的框架。在实际操作过程中,详细阅读项目中的具体文档和示例仍然是获得最佳实践的关键。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
121
149
暂无简介
Dart
579
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
182
仓颉编译器源码及 cjdb 调试工具。
C++
121
323
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
610
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.17 K