首页
/ 推荐一款高效的自我注意力序列推荐模型——SASRec-PyTorch

推荐一款高效的自我注意力序列推荐模型——SASRec-PyTorch

2024-05-24 09:49:48作者:尤峻淳Whitney

1、项目介绍

SASRec-PyTorch 是一个基于 PyTorch 的自我注意力(Self-Attentive)序列推荐框架,它源自于 Kang 和 McAuley 在 2018 年 IEEE 国际数据挖掘会议(ICDM)上提出的著名论文 "Self-attentive sequential recommendation"。这个开源实现是原 TensorFlow 版本的简化和移植,旨在为研究者和开发者提供更简洁、易于执行的代码。

2、项目技术分析

SASRec 利用自注意力机制来捕捉用户行为序列中的长期依赖关系。与传统的 RNN 或 CNN 相比,自注意力结构可以并行计算,大大提高了训练速度。在 SASRec-PyTorch 中,模型的核心是多头注意力层,能够同时关注序列的不同方面,形成更全面的用户兴趣表示。此外,项目已更新到 PyTorch v1.6,修复了可能导致性能差距的问题,并支持 CUDA 训练以加速运算。

3、项目及技术应用场景

SASRec 模型特别适合那些需要理解用户行为序列的推荐系统,如电子商务网站、社交媒体平台或流媒体服务。通过理解和预测用户的行为模式,它可以为每个用户提供个性化的内容推荐,提高用户体验和转化率。例如:

  • 电商推荐:根据用户的浏览和购买历史,预测他们可能感兴趣的商品。
  • 音乐/视频推荐:根据用户的播放历史,推荐相似或互补的内容。
  • 新闻推送:根据用户的阅读习惯,推送相关的新闻报道。

4、项目特点

  • 高效: 使用 PyTorch 1.6 实现,支持 CUDA 运算,加速模型训练过程。
  • 简单易用: 能够轻松运行测试命令,快速验证模型效果。
  • 预训练模型: 提供预训练模型,方便用户直接进行推理和应用。
  • 可扩展: 代码结构清晰,方便研究人员进行模型改进和实验设计。

如果你正在寻找一个强大且灵活的序列推荐解决方案,SASRec-PyTorch 绝对值得尝试。只需要几行初始化代码,即可让你的推荐系统焕发新生。并且,持续更新的 Issue 部分也会带来最新的功能和优化建议,确保你始终紧跟技术前沿。

要开始你的推荐系统之旅,只需运行以下命令:

python main.py --dataset=ml-1m --train_dir=default --maxlen=200 --dropout_rate=0.2 --device=cuda

体验一下 SASRec 带来的强大性能提升吧!

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
153
1.98 K
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
504
42
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
194
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
938
554
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
332
11
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70