推荐一款高效的自我注意力序列推荐模型——SASRec-PyTorch
2024-05-24 09:49:48作者:尤峻淳Whitney
1、项目介绍
SASRec-PyTorch 是一个基于 PyTorch 的自我注意力(Self-Attentive)序列推荐框架,它源自于 Kang 和 McAuley 在 2018 年 IEEE 国际数据挖掘会议(ICDM)上提出的著名论文 "Self-attentive sequential recommendation"。这个开源实现是原 TensorFlow 版本的简化和移植,旨在为研究者和开发者提供更简洁、易于执行的代码。
2、项目技术分析
SASRec 利用自注意力机制来捕捉用户行为序列中的长期依赖关系。与传统的 RNN 或 CNN 相比,自注意力结构可以并行计算,大大提高了训练速度。在 SASRec-PyTorch 中,模型的核心是多头注意力层,能够同时关注序列的不同方面,形成更全面的用户兴趣表示。此外,项目已更新到 PyTorch v1.6,修复了可能导致性能差距的问题,并支持 CUDA 训练以加速运算。
3、项目及技术应用场景
SASRec 模型特别适合那些需要理解用户行为序列的推荐系统,如电子商务网站、社交媒体平台或流媒体服务。通过理解和预测用户的行为模式,它可以为每个用户提供个性化的内容推荐,提高用户体验和转化率。例如:
- 电商推荐:根据用户的浏览和购买历史,预测他们可能感兴趣的商品。
- 音乐/视频推荐:根据用户的播放历史,推荐相似或互补的内容。
- 新闻推送:根据用户的阅读习惯,推送相关的新闻报道。
4、项目特点
- 高效: 使用 PyTorch 1.6 实现,支持 CUDA 运算,加速模型训练过程。
- 简单易用: 能够轻松运行测试命令,快速验证模型效果。
- 预训练模型: 提供预训练模型,方便用户直接进行推理和应用。
- 可扩展: 代码结构清晰,方便研究人员进行模型改进和实验设计。
如果你正在寻找一个强大且灵活的序列推荐解决方案,SASRec-PyTorch 绝对值得尝试。只需要几行初始化代码,即可让你的推荐系统焕发新生。并且,持续更新的 Issue 部分也会带来最新的功能和优化建议,确保你始终紧跟技术前沿。
要开始你的推荐系统之旅,只需运行以下命令:
python main.py --dataset=ml-1m --train_dir=default --maxlen=200 --dropout_rate=0.2 --device=cuda
体验一下 SASRec 带来的强大性能提升吧!
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1