推荐一款高效的自我注意力序列推荐模型——SASRec-PyTorch
2024-05-24 09:49:48作者:尤峻淳Whitney
1、项目介绍
SASRec-PyTorch 是一个基于 PyTorch 的自我注意力(Self-Attentive)序列推荐框架,它源自于 Kang 和 McAuley 在 2018 年 IEEE 国际数据挖掘会议(ICDM)上提出的著名论文 "Self-attentive sequential recommendation"。这个开源实现是原 TensorFlow 版本的简化和移植,旨在为研究者和开发者提供更简洁、易于执行的代码。
2、项目技术分析
SASRec 利用自注意力机制来捕捉用户行为序列中的长期依赖关系。与传统的 RNN 或 CNN 相比,自注意力结构可以并行计算,大大提高了训练速度。在 SASRec-PyTorch 中,模型的核心是多头注意力层,能够同时关注序列的不同方面,形成更全面的用户兴趣表示。此外,项目已更新到 PyTorch v1.6,修复了可能导致性能差距的问题,并支持 CUDA 训练以加速运算。
3、项目及技术应用场景
SASRec 模型特别适合那些需要理解用户行为序列的推荐系统,如电子商务网站、社交媒体平台或流媒体服务。通过理解和预测用户的行为模式,它可以为每个用户提供个性化的内容推荐,提高用户体验和转化率。例如:
- 电商推荐:根据用户的浏览和购买历史,预测他们可能感兴趣的商品。
- 音乐/视频推荐:根据用户的播放历史,推荐相似或互补的内容。
- 新闻推送:根据用户的阅读习惯,推送相关的新闻报道。
4、项目特点
- 高效: 使用 PyTorch 1.6 实现,支持 CUDA 运算,加速模型训练过程。
- 简单易用: 能够轻松运行测试命令,快速验证模型效果。
- 预训练模型: 提供预训练模型,方便用户直接进行推理和应用。
- 可扩展: 代码结构清晰,方便研究人员进行模型改进和实验设计。
如果你正在寻找一个强大且灵活的序列推荐解决方案,SASRec-PyTorch 绝对值得尝试。只需要几行初始化代码,即可让你的推荐系统焕发新生。并且,持续更新的 Issue 部分也会带来最新的功能和优化建议,确保你始终紧跟技术前沿。
要开始你的推荐系统之旅,只需运行以下命令:
python main.py --dataset=ml-1m --train_dir=default --maxlen=200 --dropout_rate=0.2 --device=cuda
体验一下 SASRec 带来的强大性能提升吧!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K