Apollo Client 3.9+ 版本缓存限制变更与性能优化指南
2025-05-11 07:12:35作者:毕习沙Eudora
背景介绍
在 Apollo Client 3.9 版本中,开发团队对内存管理进行了重大改进,特别是对内部缓存机制进行了重构。这些变更虽然提升了大多数场景下的性能,但也导致了一些大型查询应用的性能下降问题。
缓存限制变更详情
在 3.9 版本之前,Apollo Client 使用的是 optimism 库的默认缓存限制,即 2^16 (65536) 个键值对。这个相对宽松的限制适合处理大型查询,但同时也带来了潜在的内存泄漏风险。
3.9 版本后,团队重新评估了所有内部缓存:
executeSelectionSet缓存限制调整为 50,000executeSubSelectedArray缓存限制调整为 10,000- 引入了 Weak LRU Cache 实现替代部分 WeakMaps
- 为每个缓存设置了更合理的默认大小
性能问题表现
升级到 3.9+ 版本后,用户报告的主要问题包括:
- 执行大型查询时页面响应缓慢
- 当查询结果超过缓存限制时,整个应用可能出现冻结
- 原本流畅的操作变得卡顿
解决方案
1. 调整缓存限制配置
可以通过以下方式恢复之前的缓存行为:
new ApolloClient({
cache: new InMemoryCache({
resultCacheMaxSize: 65536, // 恢复为 2^16
// 其他相关配置...
})
});
2. 针对特定查询禁用缓存
对于特别大的、不常更新的查询,可以设置 no-cache 策略:
const { data } = useQuery(MY_LARGE_QUERY, {
fetchPolicy: 'no-cache'
});
3. 监控缓存使用情况
开发了一个简单的 Python 脚本来估算查询结果的缓存键使用量,帮助识别问题查询:
# 缓存键计数脚本示例
def count_leaf_objects(data):
if isinstance(data, dict):
if not data: return 1
adder = 1 if len([v for v in data.values()
if isinstance(v, (dict, list))]) == 0 else 0
return adder + sum(count_leaf_objects(v) for v in data.values())
elif isinstance(data, list):
if not data: return 1
adder = 1 if len([i for i in data
if isinstance(i, (dict, list))]) == 0 else 0
return adder + sum(count_leaf_objects(i) for i in data)
return 0
深入技术细节
缓存机制变更
3.9 版本的主要改进包括:
- 更精确的缓存键设计,减少冗余
- 使用 Weak LRU Cache 替代部分 WeakMaps,提高内存回收效率
- 为不同功能的缓存设置独立的大小限制
性能权衡
Apollo 团队在做出这些变更时面临的核心权衡是:
- 更小的缓存限制 → 减少内存占用,但可能增加重复计算
- 更大的缓存限制 → 提高查询速度,但增加内存压力
最佳实践建议
- 渐进式升级:从 3.6 直接升级到 3.9+ 时,建议分阶段进行
- 性能监控:升级前后使用性能分析工具对比关键操作
- 查询优化:对于大型查询,考虑拆分或添加分页参数
- 配置调优:根据应用特点调整缓存参数,找到最佳平衡点
总结
Apollo Client 3.9+ 的缓存改进虽然带来了更安全的内存管理,但也需要开发者根据应用特点进行适当调整。理解这些变更背后的设计理念和实际影响,将帮助开发者更好地驾驭新版本,在保证性能的同时避免内存问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355