Apollo Client 3.9+ 版本缓存限制变更与性能优化指南
2025-05-11 11:04:39作者:毕习沙Eudora
背景介绍
在 Apollo Client 3.9 版本中,开发团队对内存管理进行了重大改进,特别是对内部缓存机制进行了重构。这些变更虽然提升了大多数场景下的性能,但也导致了一些大型查询应用的性能下降问题。
缓存限制变更详情
在 3.9 版本之前,Apollo Client 使用的是 optimism 库的默认缓存限制,即 2^16 (65536) 个键值对。这个相对宽松的限制适合处理大型查询,但同时也带来了潜在的内存泄漏风险。
3.9 版本后,团队重新评估了所有内部缓存:
executeSelectionSet缓存限制调整为 50,000executeSubSelectedArray缓存限制调整为 10,000- 引入了 Weak LRU Cache 实现替代部分 WeakMaps
- 为每个缓存设置了更合理的默认大小
性能问题表现
升级到 3.9+ 版本后,用户报告的主要问题包括:
- 执行大型查询时页面响应缓慢
- 当查询结果超过缓存限制时,整个应用可能出现冻结
- 原本流畅的操作变得卡顿
解决方案
1. 调整缓存限制配置
可以通过以下方式恢复之前的缓存行为:
new ApolloClient({
cache: new InMemoryCache({
resultCacheMaxSize: 65536, // 恢复为 2^16
// 其他相关配置...
})
});
2. 针对特定查询禁用缓存
对于特别大的、不常更新的查询,可以设置 no-cache 策略:
const { data } = useQuery(MY_LARGE_QUERY, {
fetchPolicy: 'no-cache'
});
3. 监控缓存使用情况
开发了一个简单的 Python 脚本来估算查询结果的缓存键使用量,帮助识别问题查询:
# 缓存键计数脚本示例
def count_leaf_objects(data):
if isinstance(data, dict):
if not data: return 1
adder = 1 if len([v for v in data.values()
if isinstance(v, (dict, list))]) == 0 else 0
return adder + sum(count_leaf_objects(v) for v in data.values())
elif isinstance(data, list):
if not data: return 1
adder = 1 if len([i for i in data
if isinstance(i, (dict, list))]) == 0 else 0
return adder + sum(count_leaf_objects(i) for i in data)
return 0
深入技术细节
缓存机制变更
3.9 版本的主要改进包括:
- 更精确的缓存键设计,减少冗余
- 使用 Weak LRU Cache 替代部分 WeakMaps,提高内存回收效率
- 为不同功能的缓存设置独立的大小限制
性能权衡
Apollo 团队在做出这些变更时面临的核心权衡是:
- 更小的缓存限制 → 减少内存占用,但可能增加重复计算
- 更大的缓存限制 → 提高查询速度,但增加内存压力
最佳实践建议
- 渐进式升级:从 3.6 直接升级到 3.9+ 时,建议分阶段进行
- 性能监控:升级前后使用性能分析工具对比关键操作
- 查询优化:对于大型查询,考虑拆分或添加分页参数
- 配置调优:根据应用特点调整缓存参数,找到最佳平衡点
总结
Apollo Client 3.9+ 的缓存改进虽然带来了更安全的内存管理,但也需要开发者根据应用特点进行适当调整。理解这些变更背后的设计理念和实际影响,将帮助开发者更好地驾驭新版本,在保证性能的同时避免内存问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881