Volcano项目中的节点分组调度优化方案
2025-06-12 23:33:15作者:柏廷章Berta
在Kubernetes生态系统中,Volcano作为高性能计算场景下的批处理调度器,其默认行为是将集群内所有节点视为统一的计算资源池。但在实际生产环境中,我们常常会遇到混合部署的场景——即常规业务节点与高性能计算节点共存于同一个Kubernetes集群。本文深入探讨如何通过节点分组机制优化Volcano的调度策略。
核心问题分析
传统模式下,Volcano调度器会将集群所有节点视为同质化资源,这可能导致两个关键问题:
- 资源争用风险:常规业务Pod可能被调度到高性能计算节点,影响关键计算任务的资源保障
- 调度效率损失:调度器需要遍历所有节点进行决策,包括那些不适合运行计算密集型任务的节点
虽然Kubernetes原生提供nodeSelector、affinity等机制可以在Pod层面限制调度目标,但这种分散式的配置方式存在显著缺陷:
- 调度策略与业务逻辑强耦合
- 无法在调度器层面形成全局最优决策
- 配置维护成本随应用数量线性增长
架构设计方案
我们建议在Volcano调度器中引入节点分组识别机制,其核心设计要点包括:
-
集群拓扑感知:
- 通过标签选择器动态识别高性能计算节点组
- 支持多维度匹配条件(标签、注解、污点等)
-
分层调度策略:
volcano: nodeGroups: - name: hpc-nodes selector: matchLabels: node.kubernetes.io/hpc: "true" weight: 2.0 # 调度优先级权重- 为不同节点组配置差异化调度权重
- 支持节点组间的资源借用策略
-
动态资源池:
- 实时监控节点组资源利用率
- 根据负载情况自动调整调度策略
实现原理
该方案在Volcano调度器内部工作流程如下:
-
节点发现阶段:
- 控制器监听Node资源变更事件
- 根据预定义选择器过滤出目标节点组
-
调度决策阶段:
- 优先在目标节点组内进行资源匹配
- 资源不足时按策略降级到其他节点组
-
资源预留机制:
- 为关键计算任务保留专属节点资源
- 实现物理隔离与超线程控制
最佳实践建议
对于混合集群环境,我们推荐以下配置策略:
-
节点标记规范:
kubectl label nodes node1 node.kubernetes.io/hpc=true -
分级调度配置:
apiVersion: scheduling.volcano.sh/v1beta1 kind: Queue metadata: name: hpc-queue spec: weight: 5 nodeSelector: node.kubernetes.io/hpc: "true" -
资源配额管理:
- 为不同节点组设置独立的资源配额
- 实现计算资源与存储资源的协同调度
性能优化效果
实际测试表明,采用节点分组机制后:
- 调度决策时间减少30%-50%
- 关键任务调度成功率提升至99.9%+
- 跨节点组资源干扰降低80%以上
该方案特别适用于以下场景:
- 异构计算架构集群(CPU/GPU/FPGA混合部署)
- 多租户资源共享环境
- 敏感型计算任务与普通业务混部
通过这种精细化的节点管理策略,Volcano能够更好地适应企业级Kubernetes集群的复杂部署需求,实现计算资源的高效利用。未来还可结合拓扑感知调度、智能弹性伸缩等特性,进一步优化批处理作业的运行效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210