Volcano项目中的节点分组调度优化方案
2025-06-12 09:08:46作者:柏廷章Berta
在Kubernetes生态系统中,Volcano作为高性能计算场景下的批处理调度器,其默认行为是将集群内所有节点视为统一的计算资源池。但在实际生产环境中,我们常常会遇到混合部署的场景——即常规业务节点与高性能计算节点共存于同一个Kubernetes集群。本文深入探讨如何通过节点分组机制优化Volcano的调度策略。
核心问题分析
传统模式下,Volcano调度器会将集群所有节点视为同质化资源,这可能导致两个关键问题:
- 资源争用风险:常规业务Pod可能被调度到高性能计算节点,影响关键计算任务的资源保障
- 调度效率损失:调度器需要遍历所有节点进行决策,包括那些不适合运行计算密集型任务的节点
虽然Kubernetes原生提供nodeSelector、affinity等机制可以在Pod层面限制调度目标,但这种分散式的配置方式存在显著缺陷:
- 调度策略与业务逻辑强耦合
- 无法在调度器层面形成全局最优决策
- 配置维护成本随应用数量线性增长
架构设计方案
我们建议在Volcano调度器中引入节点分组识别机制,其核心设计要点包括:
-
集群拓扑感知:
- 通过标签选择器动态识别高性能计算节点组
- 支持多维度匹配条件(标签、注解、污点等)
-
分层调度策略:
volcano: nodeGroups: - name: hpc-nodes selector: matchLabels: node.kubernetes.io/hpc: "true" weight: 2.0 # 调度优先级权重- 为不同节点组配置差异化调度权重
- 支持节点组间的资源借用策略
-
动态资源池:
- 实时监控节点组资源利用率
- 根据负载情况自动调整调度策略
实现原理
该方案在Volcano调度器内部工作流程如下:
-
节点发现阶段:
- 控制器监听Node资源变更事件
- 根据预定义选择器过滤出目标节点组
-
调度决策阶段:
- 优先在目标节点组内进行资源匹配
- 资源不足时按策略降级到其他节点组
-
资源预留机制:
- 为关键计算任务保留专属节点资源
- 实现物理隔离与超线程控制
最佳实践建议
对于混合集群环境,我们推荐以下配置策略:
-
节点标记规范:
kubectl label nodes node1 node.kubernetes.io/hpc=true -
分级调度配置:
apiVersion: scheduling.volcano.sh/v1beta1 kind: Queue metadata: name: hpc-queue spec: weight: 5 nodeSelector: node.kubernetes.io/hpc: "true" -
资源配额管理:
- 为不同节点组设置独立的资源配额
- 实现计算资源与存储资源的协同调度
性能优化效果
实际测试表明,采用节点分组机制后:
- 调度决策时间减少30%-50%
- 关键任务调度成功率提升至99.9%+
- 跨节点组资源干扰降低80%以上
该方案特别适用于以下场景:
- 异构计算架构集群(CPU/GPU/FPGA混合部署)
- 多租户资源共享环境
- 敏感型计算任务与普通业务混部
通过这种精细化的节点管理策略,Volcano能够更好地适应企业级Kubernetes集群的复杂部署需求,实现计算资源的高效利用。未来还可结合拓扑感知调度、智能弹性伸缩等特性,进一步优化批处理作业的运行效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355