多相机校准开源项目指南:KumarRobotics/multicam_calibration
2024-09-26 18:06:20作者:伍霜盼Ellen
项目概述
本指南详细介绍了GitHub上的开源项目kumarrobotics/multicam_calibration,一个用于进行多相机外置与内参校准的工具包。这个项目特别适用于那些需要同步多个摄像头数据的应用场景,并且遵循了Kalibr的AprilGrid标定布局。
1. 项目目录结构及介绍
项目的主要目录结构如下:
multicam_calibration/
├── calib # 校准相关代码和脚本
├── config # 配置文件夹,包括aprilgrid.yaml等设定模板
│ ├── aprilgrid.yaml # AprilGrid目标参数定义
│ ├── example_perspective # 示例视角文件
│ └── corners.csv # 可能保存的检测到的角点数据
├── launch # 启动文件夹,存放roslaunch文件用于启动节点
├── src # 源码文件夹,包含主要功能实现
│ ├── example_calib_manager.py # 样例校准管理器脚本,控制校准流程
├── include/multicam_calibration # 包含头文件,用于项目内部接口定义
├── srv # ROS服务定义文件
├── nodelet_plugin.xml # Nodelet插件配置文件
├── package.xml # ROS包描述文件
└── README.md # 项目说明文档
- calib: 包含处理校准逻辑的核心源代码。
- config: 存放各种配置文件,如校准所需的AprilGrid设置和初始估计值。
- launch: 提供了用于启动程序的ROS发射文件。
- src: 包含所有应用程序的主要Python和C++源代码。
- srv: 定义用于服务调用的ROS服务消息类型。
- include 和 nodelet_plugin.xml: 支持Nodelet架构的文件,使处理更高效。
- package.xml: ROS包的标准配置文件。
2. 项目启动文件介绍
主要的启动入口是通过ROS的roslaunch命令执行特定的.launch文件位于launch目录下。例如,通过运行类似以下命令来启动多相机校准过程:
roslaunch multicam_calibration calibration.launch
这个命令将会启动校准流程,需要之前已经正确配置了摄像机参数以及校准环境。
3. 项目的配置文件介绍
example_camera-initial.yaml
这是一个示例配置文件,包含了预先设定的相机内参和外参估计。每台相机的配置包括:
- camera_model: 相机模型,通常是“pinhole”模型。
- intrinsics: 内参矩阵的元素列表(焦距、中心偏移)。
- distortion_model: 畸变模型,如“equidistant”。
- distortion_coeffs: 畸变系数。
- resolution: 图像分辨率。
- rostopic: 对应的ROS话题名,用来接收图像流。
config/aprilgrid.yaml
定义AprilTag网格的参数,这是校准时使用的标定板布局,确保所有参与校准的相机可以看到同一个物理标定板以提取特征点。
其他配置文件
- corners_file (
corners.csv): 用于存储检测到的角点,可用于重演或离线分析。 - 其他yaml文件: 如
example_camera-latest.yaml,用于保存最新校准结果。
在配置相机时,需确保rostopic匹配实际的摄像头发布的话题,并根据实际情况调整相机初始参数。此外,launch文件中的配置可能也需要相应调整,以适应不同的校验环境和需求。
此指南基于提供的开源项目文档和结构进行编写,为了成功应用此项目,还需要安装必要的依赖库如ROS, Catkin, apriltag, 以及libceres-dev等,并进行适当的ROS工作空间配置。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
661