多相机校准项目教程
2024-09-20 13:55:51作者:郁楠烈Hubert
1. 项目介绍
multicam_calibration
是一个用于多相机系统校准的开源项目,由 KumarRobotics 团队开发。该项目旨在通过使用 AprilGrid 校准目标,估计多相机系统的内在和外在参数。通过该项目,用户可以校准多个相机的内在参数(如焦距、畸变系数等)和外在参数(如相机之间的相对位置和姿态)。
该项目基于 ROS(Robot Operating System)平台,适用于需要高精度多相机系统的应用场景,如机器人视觉、自动驾驶等。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下软件和库:
- ROS(推荐使用 Melodic 或 Noetic 版本)
- Ceres Solver
- AprilTag
2.2 下载和编译
-
创建一个 ROS 工作空间:
mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src
-
克隆
multicam_calibration
项目:git clone https://github.com/KumarRobotics/multicam_calibration.git
-
安装依赖项:
sudo apt install libceres-dev
-
编译项目:
cd ~/catkin_ws catkin config -DCMAKE_BUILD_TYPE=Release catkin build
2.3 配置和运行
-
编辑初始校准文件
calib/example/example_camera-initial.yaml
,配置相机的初始参数。例如:cam0: camera_model: pinhole intrinsics: [605.054, 604.66, 641.791, 508.728] distortion_model: equidistant distortion_coeffs: [-0.0146915, 0.000370396, -0.00425216, 0.0015107] resolution: [1280, 1024] rostopic: /rig/left/image_mono
-
启动校准节点:
roslaunch multicam_calibration calibration.launch
-
播放校准数据包(或进行实时校准):
rosbag play your_calibration_bag.bag
-
开始校准:
rosservice call /multicam_calibration/calibration
3. 应用案例和最佳实践
3.1 应用案例
- 机器人视觉:在机器人视觉系统中,多个相机可以提供更广阔的视野和更高的精度,
multicam_calibration
可以帮助校准这些相机,确保它们协同工作。 - 自动驾驶:自动驾驶车辆通常配备多个摄像头,用于环境感知和障碍物检测。通过校准这些相机,可以提高系统的可靠性和安全性。
3.2 最佳实践
- 数据采集:在校准过程中,确保采集足够多的数据帧,以覆盖不同的视角和光照条件。
- 初始参数:提供尽可能准确的初始参数,可以加速校准过程并提高校准结果的精度。
- 多次校准:如果校准结果不理想,可以多次运行校准过程,每次使用上一次的结果作为初始值。
4. 典型生态项目
- Kalibr:一个广泛使用的多相机和相机-IMU 校准工具,支持多种相机模型和畸变模型。
- Ceres Solver:一个用于非线性最小二乘问题的开源库,
multicam_calibration
使用它来进行优化。 - AprilTag:一个用于视觉定位和校准的二维码库,
multicam_calibration
使用 AprilTag 进行特征点检测。
通过这些生态项目的配合,multicam_calibration
可以实现更复杂和精确的校准任务。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
0