多相机校准项目教程
2024-09-20 07:50:52作者:郁楠烈Hubert
1. 项目介绍
multicam_calibration
是一个用于多相机系统校准的开源项目,由 KumarRobotics 团队开发。该项目旨在通过使用 AprilGrid 校准目标,估计多相机系统的内在和外在参数。通过该项目,用户可以校准多个相机的内在参数(如焦距、畸变系数等)和外在参数(如相机之间的相对位置和姿态)。
该项目基于 ROS(Robot Operating System)平台,适用于需要高精度多相机系统的应用场景,如机器人视觉、自动驾驶等。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下软件和库:
- ROS(推荐使用 Melodic 或 Noetic 版本)
- Ceres Solver
- AprilTag
2.2 下载和编译
-
创建一个 ROS 工作空间:
mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src
-
克隆
multicam_calibration
项目:git clone https://github.com/KumarRobotics/multicam_calibration.git
-
安装依赖项:
sudo apt install libceres-dev
-
编译项目:
cd ~/catkin_ws catkin config -DCMAKE_BUILD_TYPE=Release catkin build
2.3 配置和运行
-
编辑初始校准文件
calib/example/example_camera-initial.yaml
,配置相机的初始参数。例如:cam0: camera_model: pinhole intrinsics: [605.054, 604.66, 641.791, 508.728] distortion_model: equidistant distortion_coeffs: [-0.0146915, 0.000370396, -0.00425216, 0.0015107] resolution: [1280, 1024] rostopic: /rig/left/image_mono
-
启动校准节点:
roslaunch multicam_calibration calibration.launch
-
播放校准数据包(或进行实时校准):
rosbag play your_calibration_bag.bag
-
开始校准:
rosservice call /multicam_calibration/calibration
3. 应用案例和最佳实践
3.1 应用案例
- 机器人视觉:在机器人视觉系统中,多个相机可以提供更广阔的视野和更高的精度,
multicam_calibration
可以帮助校准这些相机,确保它们协同工作。 - 自动驾驶:自动驾驶车辆通常配备多个摄像头,用于环境感知和障碍物检测。通过校准这些相机,可以提高系统的可靠性和安全性。
3.2 最佳实践
- 数据采集:在校准过程中,确保采集足够多的数据帧,以覆盖不同的视角和光照条件。
- 初始参数:提供尽可能准确的初始参数,可以加速校准过程并提高校准结果的精度。
- 多次校准:如果校准结果不理想,可以多次运行校准过程,每次使用上一次的结果作为初始值。
4. 典型生态项目
- Kalibr:一个广泛使用的多相机和相机-IMU 校准工具,支持多种相机模型和畸变模型。
- Ceres Solver:一个用于非线性最小二乘问题的开源库,
multicam_calibration
使用它来进行优化。 - AprilTag:一个用于视觉定位和校准的二维码库,
multicam_calibration
使用 AprilTag 进行特征点检测。
通过这些生态项目的配合,multicam_calibration
可以实现更复杂和精确的校准任务。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K