Locust负载测试工具中spawn_rate参数持久化问题分析
问题背景
在Locust负载测试工具的使用过程中,发现了一个关于spawn_rate参数持久化的设计问题。spawn_rate参数用于控制虚拟用户(Virtual Users)的生成速率,但在当前版本中,该参数仅在MasterRunner中被持久化存储,而在LocalRunner和WorkerRunner中则未被保存。
技术细节
Locust的架构设计中,Master节点负责协调整个负载测试过程,而Worker节点则执行实际的测试任务。在Master节点中,spawn_rate参数被显式地存储在self.spawn_rate属性中,这使得Master节点能够记住用户设置的生成速率。
然而,在LocalRunner和WorkerRunner实现中,虽然能够接收并处理spawn_rate参数,但并未将该参数持久化存储。这导致当测试需要重新启动时,LocalRunner无法获取之前设置的spawn_rate值,只能获取到user_count参数。
影响分析
这一设计限制影响了以下使用场景:
- 通过Web界面设置spawn_rate后,无法在测试重启时自动恢复该参数
- 在自定义事件处理中,无法可靠地获取之前的spawn_rate值
- 需要额外的工作来维护spawn_rate参数的状态
解决方案探讨
根据Locust核心开发者的解释,这种设计是有意为之的。因为Worker节点实际上并不需要知道spawn_rate的具体值,Master节点只需告知Worker何时启动或停止虚拟用户即可。
对于需要访问spawn_rate参数的用户,可以考虑以下替代方案:
- 使用自定义参数机制,将spawn_rate作为自定义参数传递
- 在测试启动时显式记录spawn_rate值
- 通过环境变量或其他外部存储维护该参数
技术建议
对于需要在事件处理中使用spawn_rate的开发者,建议采用以下模式:
@events.test_start.add_listener
def on_test_start(environment, **kwargs):
if not hasattr(environment.runner, 'last_spawn_rate'):
environment.runner.last_spawn_rate = DEFAULT_SPAWN_RATE
user_count = environment.runner.target_user_count
spawn_rate = getattr(environment.runner, 'last_spawn_rate', DEFAULT_SPAWN_RATE)
environment.runner.last_spawn_rate = spawn_rate # 持久化当前值
environment.runner.start(user_count=user_count, spawn_rate=spawn_rate, wait=False)
这种实现方式可以在所有Runner类型中保持spawn_rate参数的持久性,而不依赖于Locust的内部实现。
总结
Locust的设计哲学强调简单性和可扩展性。虽然spawn_rate参数在Worker节点中的持久化被有意省略,但通过合理的设计模式,开发者仍然可以实现所需的功能。理解工具的设计意图并采用适当的扩展方式,是有效使用Locust进行负载测试的关键。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00