如何在Sentence Transformers项目中合并并保存PEFT微调后的模型
2025-05-13 22:56:20作者:郜逊炳
在自然语言处理领域,Sentence Transformers是一个广泛使用的框架,用于训练和使用句子嵌入模型。随着大语言模型(LLM)的兴起,参数高效微调(PEFT)技术,特别是LoRA(Low-Rank Adaptation),已成为微调大型模型的重要方法。本文将详细介绍如何在Sentence Transformers项目中正确合并并保存经过PEFT微调的模型。
PEFT与LoRA技术简介
PEFT(Parameter-Efficient Fine-Tuning)是一类参数高效微调技术,它允许我们在只更新少量参数的情况下微调大型预训练模型。LoRA是其中最具代表性的方法之一,它通过向模型添加低秩适配器来实现微调,而不是直接修改原始模型参数。
这种方法的主要优势在于:
- 显著减少训练所需的显存
- 大幅降低需要保存的检查点大小
- 保持原始模型的性能
在Sentence Transformers中使用LoRA
在Sentence Transformers中集成LoRA适配器相对简单。以下是一个典型的适配器添加示例:
from peft import LoraConfig, TaskType
from sentence_transformers import SentenceTransformer
peft_config = LoraConfig(
task_type=TaskType.FEATURE_EXTRACTION,
inference_mode=False,
r=8, # 低秩矩阵的秩
lora_alpha=32, # 缩放因子
lora_dropout=0.1, # Dropout率
)
model = SentenceTransformer("base-model-name")
model.add_adapter(peft_config)
模型合并的关键步骤
训练完成后,我们通常希望将LoRA适配器与基础模型合并,得到一个完整的模型。以下是正确的方法:
# 获取Transformer/PEFT底层模型并合并
model[0].auto_model = model[0].auto_model.merge_and_unload()
# 重要:设置此标志以确保正确保存
model[0].auto_model._hf_peft_config_loaded = False
# 保存合并后的模型
model.save_pretrained("merged_model")
处理特殊模型的情况
对于某些特定架构的模型(如Qwen2),直接合并可能会遇到问题。这时可以采用以下工作流程:
- 首先保存适配器模型
- 然后重新加载为SentenceTransformer模型
- 最后执行合并操作
# 训练完成后保存适配器
model.save_pretrained("adapter_model")
# 重新加载适配器
merged_model = SentenceTransformer("adapter_model", trust_remote_code=True)
# 合并并保存最终模型
merged_model[0].auto_model = merged_model[0].auto_model.merge_and_unload()
merged_model[0].auto_model._hf_peft_config_loaded = False
merged_model.save_pretrained("final_model")
最佳实践建议
- 保留适配器检查点:始终先保存适配器模型,以防合并过程中出现问题
- 验证合并结果:合并后应检查模型输出是否与合并前一致
- 注意模型兼容性:某些模型架构可能需要特殊处理
- 资源管理:合并大模型时需要足够的内存和存储空间
通过遵循这些步骤和最佳实践,研究人员和开发者可以有效地在Sentence Transformers框架中使用PEFT技术微调大型语言模型,并正确保存合并后的结果,从而在实际应用中部署这些模型。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5