在Sentence Transformers中使用PEFT适配器扩展词表的技术实践
2025-05-13 19:28:19作者:翟萌耘Ralph
背景介绍
Sentence Transformers作为当前最流行的句子嵌入模型框架,在v3.3.0版本中增加了对PEFT(Parameter-Efficient Fine-Tuning)的支持。PEFT技术允许用户通过添加少量可训练参数来微调大型语言模型,显著降低了训练成本。然而,当需要扩展模型词表并同时使用PEFT时,会遇到一些技术挑战。
问题核心
在实际应用中,我们经常需要为特定领域添加新的词汇标记(token)。标准的流程是:
- 通过tokenizer.add_tokens()添加新token
- 使用resize_token_embeddings()调整模型嵌入层大小
但当结合PEFT使用时,保存和加载模型会出现以下问题:
- 直接保存的模型无法正确加载,提示嵌入层形状不匹配
- 分别保存适配器和tokenizer后重建模型,编码结果不一致
技术原理分析
PEFT适配器设计时假设基础模型的维度保持不变,它只对现有维度添加少量权重。当扩展词表时:
- 基础模型的嵌入层维度发生变化
- 但PEFT适配器仍按原始维度设计
- 导致加载时维度不匹配
解决方案
经过深入分析,正确的实现流程应该是:
- 首先创建并保存扩展词表后的基础模型:
model = SentenceTransformer("all-MiniLM-L6-v2")
model.tokenizer.add_tokens(new_tokens)
model[0].auto_model.resize_token_embeddings(len(model.tokenizer))
model.save_pretrained("resized_base_model")
- 然后基于扩展后的基础模型添加PEFT适配器:
model = SentenceTransformer("resized_base_model")
peft_config = LoraConfig(...)
model.add_adapter(peft_config)
- 训练完成后保存适配器模型:
model.save_pretrained("final_adapter_model")
- 使用时直接加载适配器模型:
loaded_model = SentenceTransformer("final_adapter_model")
注意事项
- 使用Trainer时,load_best_model_at_end=True选项目前与PEFT不兼容,会引发文件未找到错误
- 添加新token后,这些token的初始嵌入是随机的,需要足够训练数据来学习
- 不同阶段的模型保存路径应当区分清楚,避免混淆
最佳实践建议
- 对于生产环境,建议先扩展词表并微调基础模型,再添加PEFT适配器
- 记录每个模型版本的具体修改内容,便于后续维护
- 测试阶段应当验证相同输入在不同阶段的编码一致性
- 对于关键应用,考虑实现自定义的保存和加载逻辑
通过遵循上述流程,可以成功在Sentence Transformers中实现词表扩展与PEFT微调的结合,既保留了新词汇的处理能力,又享受了参数高效微调的优势。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C063
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
455
3.39 K
Ascend Extension for PyTorch
Python
257
291
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
834
411
暂无简介
Dart
706
168
React Native鸿蒙化仓库
JavaScript
282
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
173
63
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19