Gemini 2.5 AI工程工作坊:深入理解Model Context Protocol (MCP)技术
2025-06-05 22:07:38作者:蔡丛锟
引言:AI集成的新范式
在当今AI应用开发中,如何让大型语言模型(LLM)与外部系统和数据源高效交互是一个关键挑战。Model Context Protocol (MCP)作为一种创新的开放标准,正在重新定义AI助手与外部世界的连接方式。
MCP技术解析
什么是Model Context Protocol?
MCP是一种革命性的协议,它解决了传统AI集成中的几个核心痛点:
- 标准化接口:提供统一的连接规范,消除不同系统间的适配问题
- 远程能力:使AI模型能够访问分布式的工具和数据源
- 安全控制:集中式的权限管理机制
- 动态扩展:无需修改核心代码即可添加新功能
MCP与传统函数调用的对比
传统方式需要在代码中硬编码函数定义,而MCP采用声明式方法:
| 特性 | 传统函数调用 | MCP |
|---|---|---|
| 部署方式 | 本地集成 | 远程服务 |
| 扩展性 | 需要代码修改 | 动态发现 |
| 安全性 | 本地控制 | 集中管理 |
| 维护性 | 高成本 | 低成本 |
实战:使用MCP构建AI应用
环境准备
首先需要安装必要的Python包:
%pip install mcp
然后配置Gemini API客户端:
from google import genai
from google.genai import types
from mcp import ClientSession, StdioServerParameters
from mcp.client.streamable_http import streamablehttp_client
from mcp.client.stdio import stdio_client
# 初始化Gemini客户端
MODEL_ID = "gemini-2.5-flash-preview-05-20"
client = genai.Client(api_key=GEMINI_API_KEY)
连接Stdio MCP服务器
Stdio服务器适合本地开发和测试场景:
server_params = StdioServerParameters(
command="npx",
args=["-y", "@philschmid/weather-mcp"],
env=None,
)
async def run():
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
response = await client.aio.models.generate_content(
model="gemini-2.0-flash",
contents="伦敦天气如何?",
config=genai.types.GenerateContentConfig(
temperature=0,
tools=[session],
),
)
print(response.text)
await run()
构建MCP CLI代理
下面是一个完整的命令行聊天代理实现,展示如何与远程MCP服务器交互:
remote_url = "https://mcp.deepwiki.com/mcp"
async def run():
async with streamablehttp_client(remote_url) as (read, write, _):
async with ClientSession(read, write) as session:
await session.initialize()
config = genai.types.GenerateContentConfig(
temperature=0,
tools=[session],
)
print("代理已就绪。输入'exit'退出。")
chat = client.aio.chats.create(model=MODEL_ID, config=config)
while True:
user_input = input("你: ")
if user_input.lower() == "exit":
break
response = await chat.send_message(user_input)
# 处理函数调用和响应
if len(response.automatic_function_calling_history) > 0:
for call in response.automatic_function_calling_history:
if call.parts[0].function_call:
print(f"函数调用: {call.parts[0].function_call}")
elif call.parts[0].function_response:
print(f"函数响应: {call.parts[0].function_response.response['result'].content[0].text}")
print(f"助手: {response.text}")
await run()
MCP最佳实践
- 错误处理:实现健壮的错误处理机制应对网络波动
- 性能优化:使用连接池管理MCP服务器连接
- 安全考虑:
- 验证MCP服务器身份
- 实施请求限流
- 敏感数据加密
- 监控指标:跟踪调用延迟、成功率等关键指标
应用场景扩展
MCP技术可应用于多种业务场景:
- 企业知识库集成:连接内部文档管理系统
- 实时数据分析:对接业务智能工具
- 物联网控制:通过MCP控制智能设备
- 电子商务:集成产品目录和库存系统
总结与展望
Model Context Protocol代表了AI集成的未来方向,它解决了传统方法在扩展性、安全性和维护性方面的局限。通过本教程,您已经掌握了:
- MCP的核心概念和优势
- 实际连接MCP服务器的方法
- 构建交互式MCP应用的完整流程
随着MCP生态系统的成熟,我们可以预见更多创新应用场景的出现,这将进一步推动AI技术的普及和应用深度。建议开发者持续关注MCP规范的发展,并积极参与相关社区建设。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
238
2.36 K
仓颉编程语言运行时与标准库。
Cangjie
122
97
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
77
110
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
26