Gemini 2.5 AI工程工作坊:深入理解Model Context Protocol (MCP)技术
2025-06-05 02:55:30作者:蔡丛锟
引言:AI集成的新范式
在当今AI应用开发中,如何让大型语言模型(LLM)与外部系统和数据源高效交互是一个关键挑战。Model Context Protocol (MCP)作为一种创新的开放标准,正在重新定义AI助手与外部世界的连接方式。
MCP技术解析
什么是Model Context Protocol?
MCP是一种革命性的协议,它解决了传统AI集成中的几个核心痛点:
- 标准化接口:提供统一的连接规范,消除不同系统间的适配问题
- 远程能力:使AI模型能够访问分布式的工具和数据源
- 安全控制:集中式的权限管理机制
- 动态扩展:无需修改核心代码即可添加新功能
MCP与传统函数调用的对比
传统方式需要在代码中硬编码函数定义,而MCP采用声明式方法:
| 特性 | 传统函数调用 | MCP |
|---|---|---|
| 部署方式 | 本地集成 | 远程服务 |
| 扩展性 | 需要代码修改 | 动态发现 |
| 安全性 | 本地控制 | 集中管理 |
| 维护性 | 高成本 | 低成本 |
实战:使用MCP构建AI应用
环境准备
首先需要安装必要的Python包:
%pip install mcp
然后配置Gemini API客户端:
from google import genai
from google.genai import types
from mcp import ClientSession, StdioServerParameters
from mcp.client.streamable_http import streamablehttp_client
from mcp.client.stdio import stdio_client
# 初始化Gemini客户端
MODEL_ID = "gemini-2.5-flash-preview-05-20"
client = genai.Client(api_key=GEMINI_API_KEY)
连接Stdio MCP服务器
Stdio服务器适合本地开发和测试场景:
server_params = StdioServerParameters(
command="npx",
args=["-y", "@philschmid/weather-mcp"],
env=None,
)
async def run():
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
response = await client.aio.models.generate_content(
model="gemini-2.0-flash",
contents="伦敦天气如何?",
config=genai.types.GenerateContentConfig(
temperature=0,
tools=[session],
),
)
print(response.text)
await run()
构建MCP CLI代理
下面是一个完整的命令行聊天代理实现,展示如何与远程MCP服务器交互:
remote_url = "https://mcp.deepwiki.com/mcp"
async def run():
async with streamablehttp_client(remote_url) as (read, write, _):
async with ClientSession(read, write) as session:
await session.initialize()
config = genai.types.GenerateContentConfig(
temperature=0,
tools=[session],
)
print("代理已就绪。输入'exit'退出。")
chat = client.aio.chats.create(model=MODEL_ID, config=config)
while True:
user_input = input("你: ")
if user_input.lower() == "exit":
break
response = await chat.send_message(user_input)
# 处理函数调用和响应
if len(response.automatic_function_calling_history) > 0:
for call in response.automatic_function_calling_history:
if call.parts[0].function_call:
print(f"函数调用: {call.parts[0].function_call}")
elif call.parts[0].function_response:
print(f"函数响应: {call.parts[0].function_response.response['result'].content[0].text}")
print(f"助手: {response.text}")
await run()
MCP最佳实践
- 错误处理:实现健壮的错误处理机制应对网络波动
- 性能优化:使用连接池管理MCP服务器连接
- 安全考虑:
- 验证MCP服务器身份
- 实施请求限流
- 敏感数据加密
- 监控指标:跟踪调用延迟、成功率等关键指标
应用场景扩展
MCP技术可应用于多种业务场景:
- 企业知识库集成:连接内部文档管理系统
- 实时数据分析:对接业务智能工具
- 物联网控制:通过MCP控制智能设备
- 电子商务:集成产品目录和库存系统
总结与展望
Model Context Protocol代表了AI集成的未来方向,它解决了传统方法在扩展性、安全性和维护性方面的局限。通过本教程,您已经掌握了:
- MCP的核心概念和优势
- 实际连接MCP服务器的方法
- 构建交互式MCP应用的完整流程
随着MCP生态系统的成熟,我们可以预见更多创新应用场景的出现,这将进一步推动AI技术的普及和应用深度。建议开发者持续关注MCP规范的发展,并积极参与相关社区建设。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
644
149
Ascend Extension for PyTorch
Python
204
220
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
284
React Native鸿蒙化仓库
JavaScript
249
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
634
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873