构建智能分割的框架场学习:Polygonal Building Segmentation
2024-05-24 09:37:10作者:郜逊炳
在计算机视觉领域,精细化的图像分割是关键任务之一,尤其是在城市建设和地理信息应用中。Polygonal Building Segmentation by Frame Field Learning 是一个创新的开源项目,它通过添加框架场输出到图像分割神经网络中,极大地提高了建筑轮廓的分割质量和结构信息的准确性。
项目介绍
该项目的核心是一个深度学习模型,该模型不仅能输出边缘和内部掩模,还能生成一种称为“帧场”的附加信息(如图1所示),以指示建筑物的结构特征。这一额外的输出帮助优化分割过程,并为后续的多边形化步骤提供了宝贵的信息。模型训练过程中(图2),损失函数不仅要求模型输出与地面实况数据对齐,还鼓励框场的平滑性和输出的一致性。
项目技术分析
项目采用了先进的神经网络架构,结合了Unet和Resnet的优势,能够处理复杂的图像识别任务。值得注意的是,它引入了一种名为“帧场”的新概念,这是一个向量场,能指导模型学习建筑物的几何形状。此外,项目还利用Active Skeleton Model (ASM)和角点检测算法(图3)进行优化,简化非角落顶点的处理,使得最终生成的多边形更加精确和规整。
应用场景
Polygonal Building Segmentation 可广泛应用于:
- 城市规划:提供准确的建筑物布局信息。
- 地理信息系统:用于地图更新和测绘。
- 智能驾驶:辅助环境感知和路径规划。
- 灾害监测:快速评估灾后建筑损伤情况。
项目特点
- 创新的帧场输出:提供结构信息,提高分割精度。
- 强大的模型设计:集成Unet和Resnet的优点,适应复杂场景。
- 全面的数据预处理:支持多种数据集,包括Inria Aerial Image Labeling等。
- 便捷的运行环境:兼容venv,Docker和Conda环境,易于安装和部署。
- 预训练模型:提供预先训练好的模型,可以直接进行预测。
为了在自己的研究中受益于这个强大的工具,你可以直接下载并开始使用这个项目。如果你的应用涉及到建筑或地形的精细分割,那么Polygonal Building Segmentation by Frame Field Learning绝对值得尝试。引用此代码时,请参考项目README中的BibTeX条目,以确保正确归功于研发团队。
让我们一起探索人工智能在图像分割领域的无限可能!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
480
3.57 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
暂无简介
Dart
731
176
React Native鸿蒙化仓库
JavaScript
289
341
Ascend Extension for PyTorch
Python
290
322
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
仓颉编程语言运行时与标准库。
Cangjie
149
885
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
452