Apache YuniKorn 项目使用教程
2024-08-07 02:27:37作者:虞亚竹Luna
1. 项目的目录结构及介绍
Apache YuniKorn 项目的目录结构如下:
yunikorn-release/
├── helm-charts/
│ └── yunikorn/
├── perf-tools/
├── release-top-level-artifacts/
├── tools/
├── .asf.yaml
├── .gitignore
├── LICENSE
├── NOTICE
├── README.md
├── check_license.sh
├── go.mod
└── go.sum
目录介绍
helm-charts/: 包含用于 Kubernetes 的 Helm charts。perf-tools/: 性能工具目录。release-top-level-artifacts/: 发布顶级 artifacts 目录。tools/: 工具目录。.asf.yaml: Apache 软件基金会配置文件。.gitignore: Git 忽略文件。LICENSE: 项目许可证文件。NOTICE: 项目通知文件。README.md: 项目自述文件。check_license.sh: 许可证检查脚本。go.mod: Go 模块文件。go.sum: Go 模块校验和文件。
2. 项目的启动文件介绍
Apache YuniKorn 项目的启动文件主要位于 helm-charts/yunikorn/ 目录下。以下是关键文件的介绍:
helm-charts/yunikorn/templates/: 包含 Kubernetes 资源模板文件。deployment.yaml: YuniKorn 部署文件。service.yaml: YuniKorn 服务文件。configmap.yaml: YuniKorn 配置映射文件。
启动流程
- 使用 Helm 安装 YuniKorn:
helm install yunikorn ./helm-charts/yunikorn - 检查 Kubernetes 集群中的 YuniKorn 部署和服务是否正常运行。
3. 项目的配置文件介绍
Apache YuniKorn 的配置文件主要位于 helm-charts/yunikorn/values.yaml 和 helm-charts/yunikorn/templates/configmap.yaml 中。
values.yaml
values.yaml 文件包含了 Helm chart 的默认配置值,可以在此文件中自定义 YuniKorn 的配置。
configmap.yaml
configmap.yaml 文件定义了 YuniKorn 的配置映射,包含了 YuniKorn 的核心配置。
关键配置项
scheduler.name: 调度器名称。scheduler.image: 调度器镜像。scheduler.resources: 调度器资源配置。service.type: 服务类型。service.port: 服务端口。
配置示例
scheduler:
name: yunikorn
image: apache/yunikorn:latest
resources:
requests:
memory: "512Mi"
cpu: "500m"
limits:
memory: "1Gi"
cpu: "1"
service:
type: ClusterIP
port: 9089
通过修改 values.yaml 文件中的配置项,可以自定义 YuniKorn 的行为和资源分配。
以上是 Apache YuniKorn 项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用 Apache YuniKorn。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355