Viem项目中newHeads订阅与区块交易哈希缺失问题解析
问题背景
在Viem项目中,开发者使用watchBlocks方法监听新区块时,发现返回的区块对象中缺少交易哈希数组。这个问题源于底层实现使用了区块链网络的newHeads订阅机制,而该机制返回的区块头信息不包含完整的交易数据。
技术细节分析
Viem的watchBlocks方法默认通过WebSocket使用newHeads订阅来获取新区块通知。根据区块链JSON-RPC规范,newHeads订阅返回的是区块头信息,而非完整的区块数据。区块头包含如区块号、哈希、父哈希等元数据,但不包含交易列表。
然而,Viem的类型系统将返回对象定义为Block类型,该类型强制要求包含transactions字段(交易哈希数组)。这种类型定义与实际返回数据的不匹配导致了运行时错误。
解决方案演进
Viem团队对此问题提出了几种解决方案:
-
修改类型定义:使
Block类型中的transactions字段变为可选,以反映newHeads返回数据的实际情况。 -
强制使用轮询模式:通过设置
poll: true参数,改为使用getBlockByNumber等RPC方法获取完整区块数据,确保交易哈希数组的存在。 -
自动补全数据:在收到
newHeads通知后,自动调用getBlock方法获取完整区块数据,为用户提供一致的接口体验。
最终,Viem团队倾向于采用第三种方案,即在内部自动补全缺失的交易数据,既保持了接口的一致性,又利用了newHeads的低延迟优势。
最佳实践建议
对于需要交易数据的应用场景,开发者可以:
-
显式设置
includeTransactions: true参数,确保获取完整的交易数据。 -
如果对延迟敏感,可以组合使用
newHeads订阅和后续的getBlock调用,先快速响应区块到达事件,再异步获取详细交易数据。 -
对于不需要交易数据的场景,可以直接使用
watchBlockNumber方法,仅监听区块号变化。
总结
这个问题揭示了区块链客户端库中一个常见的设计挑战:如何在保持接口简洁性的同时,准确反映底层协议的数据差异。Viem的解决方案展示了如何通过合理的抽象和自动补全机制,为开发者提供更友好的API体验。
对于开发者而言,理解底层RPC方法与库抽象层之间的关系非常重要,这有助于在遇到类似问题时快速定位原因并找到合适的解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00