TorchPruner开源项目教程
2025-05-21 21:31:59作者:范靓好Udolf
1. 项目介绍
TorchPruner 是一个针对 PyTorch 模型的结构化剪枝库。它提供了多种归一化度量(有时也称为剪枝标准),用于评估可剪枝单元的相关性,并实现了用于神经网络的结构化剪枝工具。该库支持在线(on-the-fly)剪枝,即在不加载新模型的情况下对参数进行裁剪,从而降低模型的推理和训练成本。
2. 项目快速启动
首先,确保你已经安装了 PyTorch(版本1.3或更高)。然后,可以通过以下命令安装TorchPruner:
pip install -e git+https://github.com/marcoancona/TorchPruner.git#egg=torchpruner
使用归一化度量
以下是一个使用归一化度量的示例:
from torchpruner.attributions import RandomAttributionMetric
# 初始化归一化度量
attr = RandomAttributionMetric(model, data_generator, criterion, device)
# 对模型中的每个叶模块运行归一化度量
for module in model.children():
if len(list(module.children())) == 0:
# 叶模块
scores = attr.run(module)
print(scores)
使用剪枝器
以下是一个使用剪枝器的示例:
from torchpruner.pruner import Pruner
# 初始化剪枝器
pruner = Pruner(model, input_size=(c, w, h), device=device, optimizer=optimizer)
# 剪枝模型
pruner.prune_model(one_module, indices=indices_to_prune, cascading_modules=other_modules_to_be_pruned)
3. 应用案例和最佳实践
应用案例
- 模型压缩:通过剪枝减少模型参数,减少模型大小,加快推理速度。
- 过拟合缓解:通过剪枝去除冗余的神经网络路径,帮助模型泛化。
最佳实践
- 在剪枝之前,确保模型已经经过适当的训练。
- 选择合适的归一化度量标准,以便有效地识别不重要的神经网络单元。
- 在剪枝后,重新训练模型以恢复性能。
4. 典型生态项目
TorchPruner 作为 PyTorch 生态系统的一部分,可以与其他开源项目结合使用,例如:
- PyTorch:深度学习框架,提供了灵活且强大的工具来构建和训练神经网络。
- Torchvision:提供了大量流行的数据集、模型架构和常用图像变换。
- TorchAudio:处理音频数据,提供了音频处理工具和预训练模型。
通过整合这些项目,可以构建更加强大和完整的人工智能应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1