TorchPruner开源项目教程
2025-05-21 00:24:58作者:范靓好Udolf
1. 项目介绍
TorchPruner 是一个针对 PyTorch 模型的结构化剪枝库。它提供了多种归一化度量(有时也称为剪枝标准),用于评估可剪枝单元的相关性,并实现了用于神经网络的结构化剪枝工具。该库支持在线(on-the-fly)剪枝,即在不加载新模型的情况下对参数进行裁剪,从而降低模型的推理和训练成本。
2. 项目快速启动
首先,确保你已经安装了 PyTorch(版本1.3或更高)。然后,可以通过以下命令安装TorchPruner:
pip install -e git+https://github.com/marcoancona/TorchPruner.git#egg=torchpruner
使用归一化度量
以下是一个使用归一化度量的示例:
from torchpruner.attributions import RandomAttributionMetric
# 初始化归一化度量
attr = RandomAttributionMetric(model, data_generator, criterion, device)
# 对模型中的每个叶模块运行归一化度量
for module in model.children():
if len(list(module.children())) == 0:
# 叶模块
scores = attr.run(module)
print(scores)
使用剪枝器
以下是一个使用剪枝器的示例:
from torchpruner.pruner import Pruner
# 初始化剪枝器
pruner = Pruner(model, input_size=(c, w, h), device=device, optimizer=optimizer)
# 剪枝模型
pruner.prune_model(one_module, indices=indices_to_prune, cascading_modules=other_modules_to_be_pruned)
3. 应用案例和最佳实践
应用案例
- 模型压缩:通过剪枝减少模型参数,减少模型大小,加快推理速度。
- 过拟合缓解:通过剪枝去除冗余的神经网络路径,帮助模型泛化。
最佳实践
- 在剪枝之前,确保模型已经经过适当的训练。
- 选择合适的归一化度量标准,以便有效地识别不重要的神经网络单元。
- 在剪枝后,重新训练模型以恢复性能。
4. 典型生态项目
TorchPruner 作为 PyTorch 生态系统的一部分,可以与其他开源项目结合使用,例如:
- PyTorch:深度学习框架,提供了灵活且强大的工具来构建和训练神经网络。
- Torchvision:提供了大量流行的数据集、模型架构和常用图像变换。
- TorchAudio:处理音频数据,提供了音频处理工具和预训练模型。
通过整合这些项目,可以构建更加强大和完整的人工智能应用。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5