TorchPruner 项目启动与配置教程
2025-05-21 21:20:33作者:房伟宁
1. 项目的目录结构及介绍
TorchPruner 项目的主要目录结构如下:
TorchPruner/
├── experiments/ # 实验相关的配置文件和脚本
├── torchpruner/ # 包含 attributions 和 pruner 两个模块的实现代码
│ ├── __init__.py
│ ├── attributions/
│ │ ├── __init__.py
│ │ ├── apoz_attribution_metric.py
│ │ ├── random_attribution_metric.py
│ │ ├── sensitivity_attribution_metric.py
│ │ ├── taylor_attribution_metric.py
│ │ ├── weight_norm_attribution_metric.py
│ │ └── shapley_attribution_metric.py
│ └── pruner/
│ ├── __init__.py
│ └── pruner.py
├── .gitignore # 指定 Git 忽略的文件和目录
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── setup.py # 项目安装和打包的配置文件
└── ... # 其他可能存在的文件和目录
experiments/:存放实验相关的配置文件和脚本,用户可以根据自己的需求在此目录下创建新的实验配置。torchpruner/:项目的核心代码目录,包含了 attribution 和 pruner 两个子模块。attributions/:实现了多种归一化度量方法,用于评估模型中各单元的重要性。pruner/:实现了模型的剪枝功能,支持参数、模块和模型级别的剪枝。
.gitignore:定义了在 Git 版本控制中应该被忽略的文件和目录。LICENSE:项目的开源许可证,本项目采用 MIT 许可证。README.md:项目的说明文档,包含了项目的简介、安装和使用方法等。setup.py:项目的安装和打包配置文件,用于将项目打包成 Python 包。
2. 项目的启动文件介绍
TorchPruner 项目并没有一个特定的“启动文件”。项目的使用通常是从导入 torchpruner 模块开始的,例如:
from torchpruner.attributions import RandomAttributionMetric
from torchpruner.pruner import Pruner
# 创建归一化度量对象
attr = RandomAttributionMetric(model, data_generator, criterion, device)
# 创建剪枝器对象
pruner = Pruner(model, input_size=(c, w, h), device=device, optimizer=optimizer)
用户需要根据自己的需求,编写脚本来调用 torchpruner 提供的功能。
3. 项目的配置文件介绍
TorchPruner 项目的配置主要是通过代码中的参数来实现的。例如,在使用归一化度量和剪枝器时,用户需要提供以下参数:
model:待处理或剪枝的 PyTorch 模型。data_generator:用于生成计算归一化度量所需数据的数据加载器。criterion:模型的损失函数。device:模型和数据所在的设备(CPU或GPU)。input_size:模型的输入尺寸。optimizer:模型的优化器(如果需要剪枝后调整优化器状态)。
这些参数在创建归一化度量对象和剪枝器对象时提供。项目的配置主要是通过这些参数来调整的,而不是通过外部的配置文件。用户需要确保在调用相关功能前正确配置这些参数。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19