利用NUMA技术优化ktransformers推理性能的实践指南
背景介绍
在大型语言模型推理过程中,内存访问效率往往成为性能瓶颈之一。ktransformers项目作为一个高效的推理框架,通过支持NUMA(Non-Uniform Memory Access)技术,显著提升了在多核CPU系统上的推理速度。本文将详细介绍如何通过NUMA技术优化ktransformers的推理性能。
NUMA技术简介
NUMA(非一致性内存访问)是一种计算机内存设计架构,特别适用于多处理器系统。在NUMA架构中,处理器访问本地内存的速度比访问远程内存(连接到其他处理器的内存)要快。现代服务器级CPU通常都采用NUMA架构,合理利用这一特性可以显著提升内存密集型应用的性能。
硬件环境准备
要实现NUMA优化,首先需要确认硬件支持。典型的NUMA优化环境需要:
- 多核CPU(如Intel Xeon Silver 4310等服务器级处理器)
- 大容量内存(建议至少128GB)
- 高性能GPU(如NVIDIA 4090或A6000)
软件配置步骤
1. 安装NUMA开发库
在基于Debian/Ubuntu的系统上,执行以下命令安装NUMA开发包:
apt install libnuma-dev
2. 获取ktransformers源代码
git clone https://github.com/kvcache-ai/ktransformers.git
cd ktransformers
git submodule init
git submodule update
3. 编译支持NUMA的版本
使用项目提供的特殊编译目标进行编译:
make install_numa
编译过程中,需要确认输出日志中包含"NUMA support is enabled"和"NUMA library found"等信息,确保NUMA支持已正确启用。
验证NUMA配置
1. 检查系统NUMA支持
numactl --hardware
该命令会显示系统的NUMA节点信息,包括每个节点包含的CPU核心和内存容量。
2. 确认内核NUMA平衡
cat /proc/sys/kernel/numa_balancing
输出为1表示系统已启用NUMA平衡功能。
3. 监控内存分配
在模型推理过程中,可以使用以下命令实时监控内存分配情况:
watch -n1 numastat -p <pid>
其中<pid>是ktransformers进程的ID,可以通过nvidia-smi命令获取。
性能提升效果
根据实际测试数据,启用NUMA支持后,ktransformers的推理速度有显著提升:
- 在Intel Xeon Silver 4310 + NVIDIA 4090平台上,生成速度从5.2 tokens/s提升到7.4 tokens/s,提升幅度约42%
- 在NVIDIA A6000平台上,DeepSeek-R1-Q4_K_M模型的推理速度从6.5 tokens/s提升到11.5 tokens/s,提升幅度高达77%
优化原理分析
NUMA优化主要通过以下机制提升性能:
- 内存本地化:确保每个CPU核心尽可能访问本地内存,减少跨节点内存访问带来的延迟
- 负载均衡:合理分配计算任务到不同的NUMA节点,充分利用所有计算资源
- 缓存友好:减少远程内存访问,提高CPU缓存命中率
注意事项
- 并非所有系统都能从NUMA优化中获益,单节点系统或内存访问模式不均衡的系统可能效果不明显
- 过度优化NUMA配置可能导致性能下降,建议基于实际监控数据进行调整
- 不同模型和硬件配置的最佳NUMA参数可能不同,需要进行针对性调优
总结
通过合理配置NUMA支持,ktransformers在多核CPU系统上的推理性能可以得到显著提升。本文介绍的方法已在多个硬件平台上验证有效,为大型语言模型的高效推理提供了一种简单而有效的优化手段。对于追求极致推理性能的用户,NUMA优化是一个值得尝试的技术方向。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00