Self-LLM项目中Qwen1.5系列模型的量化部署实践
2025-05-15 16:01:41作者:宣聪麟
引言
在大型语言模型(LLM)的实际应用中,模型量化技术已经成为降低计算资源需求、提升推理效率的重要手段。本文将详细介绍在Self-LLM项目中针对Qwen1.5系列模型的量化部署方案,特别是7B和72B两个参数量级的Chat版本模型。
Qwen1.5模型量化概述
Qwen1.5是阿里巴巴推出的开源大语言模型系列,包含从1.8B到72B不等的多种参数量级。在实际部署中,特别是资源受限的环境下,对模型进行量化处理可以显著降低显存占用和计算开销。
目前Self-LLM项目主要支持两种量化部署方案:
- GPTQ量化:一种后训练量化方法,可以在保持较高模型精度的同时显著减小模型体积
- Int4量化:将模型权重量化为4位整数,可大幅降低显存需求
7B模型的GPTQ-Int4部署
对于Qwen1.5-7B-Chat模型,项目提供了完整的GPTQ-Int4量化部署方案。这种量化方式可以将原始FP16模型的大小压缩约4倍,同时保持较好的推理质量。
部署时需要注意以下几点:
- 量化后的模型需要特定的推理框架支持
- 显存需求从原来的约14GB降低到约6GB
- 推理速度可提升30-50%
72B模型的量化部署
针对更大的Qwen1.5-72B-Chat模型,项目同样提供了GPTQ-Int4量化方案。这种规模的模型在未量化前需要多张高端GPU才能运行,而经过量化后:
- 显存需求从约144GB降低到约36GB
- 可以在单张A100 80GB显卡上运行
- 批处理能力得到显著提升
量化部署的技术选型
在Self-LLM项目中,推荐使用以下工具链进行量化模型的部署:
- vLLM:专为LLM设计的高效推理引擎,支持多种量化模型
- LMDeploy:一站式LLM推理部署工具包,提供便捷的量化支持
这些工具不仅支持量化模型的推理,还提供了高效的批处理、持续批处理和动态批处理等高级功能,能够最大化硬件资源的利用率。
量化模型的使用建议
虽然量化可以带来显著的效率提升,但在实际应用中仍需注意:
- 量化会引入一定的精度损失,对生成质量要求极高的场景需谨慎评估
- 不同量化方法在不同硬件上的加速效果可能有差异
- 建议在部署前进行充分的测试验证
- 可以尝试不同的量化配置(如Int4、Int8)来平衡精度和效率
总结
Self-LLM项目为Qwen1.5系列模型提供了完善的量化部署支持,特别是7B和72B两个关键规模的Chat版本。通过GPTQ-Int4等量化技术,开发者可以在资源受限的环境中高效部署这些强大的语言模型。随着量化技术的不断发展,未来还将支持更多先进的量化方法和更大规模的模型部署方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
368
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882