CNI-Genie 项目教程
1. 项目介绍
CNI-Genie 是一个 Kubernetes 的开源插件,旨在为 Kubernetes 提供多网络插件的支持。通过 CNI-Genie,用户可以在部署 Pod 时选择所需的网络插件,支持的网络插件包括 Calico、Flannel、Romana 和 Weave 等。CNI-Genie 的主要功能包括:
- 多网络插件支持:允许在同一集群中使用多个 CNI 插件。
- 智能插件选择:根据性能指标自动选择最合适的 CNI 插件。
- 多 IP 地址分配:支持为单个 Pod 分配多个 IP 地址。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Kubernetes 集群
kubectl命令行工具- Git
2.2 安装 CNI-Genie
-
克隆 CNI-Genie 仓库:
git clone https://github.com/huawei-cloudnative/CNI-Genie.git cd CNI-Genie -
部署 CNI-Genie:
kubectl apply -f deploy/cni-genie.yaml -
验证安装:
kubectl get pods -n kube-system | grep cni-genie你应该看到 CNI-Genie 的 Pod 正在运行。
2.3 使用 CNI-Genie
以下是一个简单的示例,展示如何使用 CNI-Genie 部署一个 Pod 并选择特定的网络插件:
apiVersion: v1
kind: Pod
metadata:
name: sample-pod
annotations:
cni: "calico,flannel"
spec:
containers:
- name: sample-container
image: nginx
在这个示例中,Pod 将使用 Calico 和 Flannel 两个网络插件。
3. 应用案例和最佳实践
3.1 多网络插件的混合使用
在某些场景下,不同的应用可能需要不同的网络策略。例如,某些应用可能需要高性能的网络插件(如 Calico),而其他应用可能需要简单的覆盖网络(如 Flannel)。通过 CNI-Genie,你可以在同一个 Kubernetes 集群中同时使用多个网络插件,为不同的应用提供最佳的网络配置。
3.2 智能插件选择
CNI-Genie 可以根据网络的负载情况自动选择最合适的 CNI 插件。例如,当某个网络插件的负载过高时,CNI-Genie 可以自动将新的 Pod 调度到负载较低的网络插件上,从而提高整体集群的性能。
4. 典型生态项目
4.1 Calico
Calico 是一个高性能的网络插件,支持网络策略和 IP 地址管理。它适用于需要严格网络隔离和高性能的应用场景。
4.2 Flannel
Flannel 是一个简单的覆盖网络插件,适用于需要快速部署和简单网络配置的场景。
4.3 Romana
Romana 是一个基于路由的网络插件,支持高性能的网络策略和 IP 地址管理。
4.4 Weave
Weave 是一个支持多租户和网络策略的网络插件,适用于需要复杂网络配置的场景。
通过 CNI-Genie,你可以轻松地在这些网络插件之间进行切换,为不同的应用提供最佳的网络配置。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00