CNI-Genie 项目教程
1. 项目介绍
CNI-Genie 是一个 Kubernetes 的开源插件,旨在为 Kubernetes 提供多网络插件的支持。通过 CNI-Genie,用户可以在部署 Pod 时选择所需的网络插件,支持的网络插件包括 Calico、Flannel、Romana 和 Weave 等。CNI-Genie 的主要功能包括:
- 多网络插件支持:允许在同一集群中使用多个 CNI 插件。
- 智能插件选择:根据性能指标自动选择最合适的 CNI 插件。
- 多 IP 地址分配:支持为单个 Pod 分配多个 IP 地址。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下工具:
- Kubernetes 集群
kubectl
命令行工具- Git
2.2 安装 CNI-Genie
-
克隆 CNI-Genie 仓库:
git clone https://github.com/huawei-cloudnative/CNI-Genie.git cd CNI-Genie
-
部署 CNI-Genie:
kubectl apply -f deploy/cni-genie.yaml
-
验证安装:
kubectl get pods -n kube-system | grep cni-genie
你应该看到 CNI-Genie 的 Pod 正在运行。
2.3 使用 CNI-Genie
以下是一个简单的示例,展示如何使用 CNI-Genie 部署一个 Pod 并选择特定的网络插件:
apiVersion: v1
kind: Pod
metadata:
name: sample-pod
annotations:
cni: "calico,flannel"
spec:
containers:
- name: sample-container
image: nginx
在这个示例中,Pod 将使用 Calico 和 Flannel 两个网络插件。
3. 应用案例和最佳实践
3.1 多网络插件的混合使用
在某些场景下,不同的应用可能需要不同的网络策略。例如,某些应用可能需要高性能的网络插件(如 Calico),而其他应用可能需要简单的覆盖网络(如 Flannel)。通过 CNI-Genie,你可以在同一个 Kubernetes 集群中同时使用多个网络插件,为不同的应用提供最佳的网络配置。
3.2 智能插件选择
CNI-Genie 可以根据网络的负载情况自动选择最合适的 CNI 插件。例如,当某个网络插件的负载过高时,CNI-Genie 可以自动将新的 Pod 调度到负载较低的网络插件上,从而提高整体集群的性能。
4. 典型生态项目
4.1 Calico
Calico 是一个高性能的网络插件,支持网络策略和 IP 地址管理。它适用于需要严格网络隔离和高性能的应用场景。
4.2 Flannel
Flannel 是一个简单的覆盖网络插件,适用于需要快速部署和简单网络配置的场景。
4.3 Romana
Romana 是一个基于路由的网络插件,支持高性能的网络策略和 IP 地址管理。
4.4 Weave
Weave 是一个支持多租户和网络策略的网络插件,适用于需要复杂网络配置的场景。
通过 CNI-Genie,你可以轻松地在这些网络插件之间进行切换,为不同的应用提供最佳的网络配置。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~092Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile01
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









