在ModelScope/SWIFT项目中实现断点续训与数据集扩展的最佳实践
2025-05-31 01:47:51作者:庞眉杨Will
概述
在深度学习模型训练过程中,我们经常会遇到需要从已有检查点继续训练,同时扩展训练数据集的需求。本文将详细介绍如何在ModelScope/SWIFT项目中实现这一技术目标,帮助研究人员和开发者高效利用已有资源进行模型迭代。
核心概念解析
检查点(Checkpoint)机制
检查点是深度学习训练过程中的重要功能,它保存了模型在特定训练步骤的状态,包括:
- 模型参数
- 优化器状态
- 训练步数(global_step)
- 其他训练元数据
数据集扩展
数据集扩展是指在原有训练数据基础上增加新的样本,这是模型迭代中的常见需求。合理的数据集扩展可以:
- 提升模型性能
- 增强模型泛化能力
- 适应新的应用场景
技术实现方案
准备工作
-
检查点准备:确保已有训练生成的检查点文件完整,通常包含:
- 模型权重文件(pytorch_model.bin)
- 训练状态文件(trainer_state.json)
- 配置文件(config.json)
-
数据集准备:将新增数据整理为与原数据集相同格式的jsonl文件,可以直接追加到原文件或作为单独文件存放
关键参数配置
在SWIFT训练脚本中,关键参数设置如下:
--resume_from_checkpoint <your_checkpoint_path>
此参数会:
- 自动加载模型权重
- 恢复优化器状态
- 从保存的global_step继续训练
数据集加载策略
SWIFT框架会自动处理数据集的加载和合并,开发者只需:
- 确保新数据格式与原有数据一致
- 将新数据文件放在指定目录
- 训练脚本会自动检测并合并所有符合格式的数据
最佳实践建议
-
数据一致性检查:新增数据应与原数据保持相同的schema结构,避免格式不一致导致训练错误
-
训练监控:建议在恢复训练后密切关注:
- 损失函数变化曲线
- 评估指标变化
- 训练稳定性
-
检查点管理:建立规范的检查点保存策略,包括:
- 定期保存
- 版本控制
- 存储空间管理
-
学习率调整:根据实际情况考虑是否需要调整学习率策略,特别是当新增数据量较大时
常见问题解决方案
-
训练不收敛:可能是新旧数据分布差异过大,建议:
- 检查数据质量
- 适当降低学习率
- 增加数据混合的随机性
-
内存不足:数据集扩大可能导致内存需求增加,可尝试:
- 增大批次间隔(gradient_accumulation_steps)
- 使用内存映射方式加载数据
-
性能下降:如果模型在新数据上表现不佳,建议:
- 分析新旧数据特征差异
- 考虑分阶段训练策略
总结
ModelScope/SWIFT项目提供了完善的断点续训和数据集扩展支持,使研究人员能够灵活地进行模型迭代。通过合理使用resume_from_checkpoint参数和规范的数据管理,可以显著提高训练效率和模型质量。在实际应用中,建议结合具体任务需求和数据特点,制定适合的训练策略。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++089Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
192
2.15 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
969
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.35 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
205
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17