首页
/ Freesound Datasets 项目教程

Freesound Datasets 项目教程

2024-09-17 15:22:06作者:瞿蔚英Wynne

1. 项目介绍

Freesound Datasets 是一个用于协作创建开放音频集合的平台。它基于 Freesound 内容,允许用户通过提供注释来贡献数据集的创建。该平台旨在通过透明、开放和可持续的方式,促进音频和音乐计算技术的发展。Freesound Datasets 提供了多个微任务,使用户能够参与到数据集的创建过程中。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保您已经安装了 Docker 和 Docker Compose。

2.2 克隆项目

首先,克隆 Freesound Datasets 项目到本地:

git clone https://github.com/MTG/freesound-datasets.git
cd freesound-datasets

2.3 配置项目

复制 freesound_datasets/local_settings.example.pyfreesound_datasets/local_settings.py,并根据文件中的说明填写服务凭证。

cp freesound_datasets/local_settings.example.py freesound_datasets/local_settings.py

2.4 运行项目

首次运行项目时,需要执行数据库迁移:

docker-compose run --rm web python manage.py migrate

然后启动 Freesound Annotator:

docker-compose up

启动后,您可以通过浏览器访问 http://localhost:8000 来使用 Freesound Annotator。

3. 应用案例和最佳实践

3.1 数据集创建

Freesound Datasets 平台允许用户通过注释音频样本来创建新的数据集。用户可以选择现有的音频样本,并为其添加注释,从而帮助构建高质量的音频数据集。

3.2 社区协作

平台鼓励社区成员之间的协作,用户可以在平台上讨论数据集的创建过程、注释任务的协议等。通过社区的共同努力,可以提高数据集的质量和透明度。

3.3 数据集下载

创建的数据集可以定期发布,并允许用户下载不同时间戳的版本。这使得研究人员和开发者可以获取最新的数据集,用于各种音频和音乐计算任务。

4. 典型生态项目

4.1 Freesound

Freesound 是一个庞大的开放音频内容库,包含超过 40 万种声音。Freesound Datasets 利用 Freesound 作为音频内容的来源,确保数据集的多样性和开放性。

4.2 AudioSet

AudioSet 是由 Google 创建的一个大型音频数据集,包含了从 YouTube 视频中提取的音频片段。Freesound Datasets 的数据集组织方式参考了 AudioSet 的分类法,使得数据集更加结构化和易于使用。

4.3 FSD50K

FSD50K 是 Freesound Datasets 平台创建的一个大型日常声音数据集,包含了数千个来自 Freesound 的音频样本。FSD50K 的创建过程遵循了透明和开放的原则,是 Freesound Datasets 平台的一个典型应用案例。

通过以上模块的介绍,您应该已经对 Freesound Datasets 项目有了全面的了解,并能够快速启动和使用该项目。

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
610
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
57
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
376
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0