Freesound Datasets 项目教程
1. 项目介绍
Freesound Datasets 是一个用于协作创建开放音频集合的平台。它基于 Freesound 内容,允许用户通过提供注释来贡献数据集的创建。该平台旨在通过透明、开放和可持续的方式,促进音频和音乐计算技术的发展。Freesound Datasets 提供了多个微任务,使用户能够参与到数据集的创建过程中。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您已经安装了 Docker 和 Docker Compose。
2.2 克隆项目
首先,克隆 Freesound Datasets 项目到本地:
git clone https://github.com/MTG/freesound-datasets.git
cd freesound-datasets
2.3 配置项目
复制 freesound_datasets/local_settings.example.py
到 freesound_datasets/local_settings.py
,并根据文件中的说明填写服务凭证。
cp freesound_datasets/local_settings.example.py freesound_datasets/local_settings.py
2.4 运行项目
首次运行项目时,需要执行数据库迁移:
docker-compose run --rm web python manage.py migrate
然后启动 Freesound Annotator:
docker-compose up
启动后,您可以通过浏览器访问 http://localhost:8000
来使用 Freesound Annotator。
3. 应用案例和最佳实践
3.1 数据集创建
Freesound Datasets 平台允许用户通过注释音频样本来创建新的数据集。用户可以选择现有的音频样本,并为其添加注释,从而帮助构建高质量的音频数据集。
3.2 社区协作
平台鼓励社区成员之间的协作,用户可以在平台上讨论数据集的创建过程、注释任务的协议等。通过社区的共同努力,可以提高数据集的质量和透明度。
3.3 数据集下载
创建的数据集可以定期发布,并允许用户下载不同时间戳的版本。这使得研究人员和开发者可以获取最新的数据集,用于各种音频和音乐计算任务。
4. 典型生态项目
4.1 Freesound
Freesound 是一个庞大的开放音频内容库,包含超过 40 万种声音。Freesound Datasets 利用 Freesound 作为音频内容的来源,确保数据集的多样性和开放性。
4.2 AudioSet
AudioSet 是由 Google 创建的一个大型音频数据集,包含了从 YouTube 视频中提取的音频片段。Freesound Datasets 的数据集组织方式参考了 AudioSet 的分类法,使得数据集更加结构化和易于使用。
4.3 FSD50K
FSD50K 是 Freesound Datasets 平台创建的一个大型日常声音数据集,包含了数千个来自 Freesound 的音频样本。FSD50K 的创建过程遵循了透明和开放的原则,是 Freesound Datasets 平台的一个典型应用案例。
通过以上模块的介绍,您应该已经对 Freesound Datasets 项目有了全面的了解,并能够快速启动和使用该项目。
ERNIE-4.5-VL-424B-A47B-Paddle
ERNIE-4.5-VL-424B-A47B 是百度推出的多模态MoE大模型,支持文本与视觉理解,总参数量424B,激活参数量47B。基于异构混合专家架构,融合跨模态预训练与高效推理优化,具备强大的图文生成、推理和问答能力。适用于复杂多模态任务场景00pangu-pro-moe
盘古 Pro MoE (72B-A16B):昇腾原生的分组混合专家模型014kornia
🐍 空间人工智能的几何计算机视觉库Python00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00
热门内容推荐
最新内容推荐
项目优选









