Kaggle Freesound Audio Tagging 项目教程
2024-08-24 00:19:46作者:尤峻淳Whitney
1. 项目的目录结构及介绍
kaggle-freesound-audio-tagging/
├── data/
│ ├── processed/
│ └── raw/
├── models/
├── notebooks/
├── src/
│ ├── data/
│ ├── features/
│ ├── models/
│ └── visualization/
├── .gitignore
├── README.md
├── requirements.txt
└── setup.py
data/: 存储数据文件,包括原始数据 (raw/) 和处理后的数据 (processed/)。models/: 存储训练好的模型文件。notebooks/: 存储 Jupyter Notebook 文件,用于数据分析和模型实验。src/: 项目的源代码目录,包含数据处理 (data/)、特征工程 (features/)、模型训练 (models/) 和可视化 (visualization/) 等子目录。.gitignore: 指定 Git 版本控制系统忽略的文件和目录。README.md: 项目说明文档。requirements.txt: 项目依赖的 Python 包列表。setup.py: 项目安装脚本。
2. 项目的启动文件介绍
项目的启动文件通常位于 src/ 目录下,例如 src/train.py 或 src/main.py。这些文件负责启动整个项目的训练或预测流程。
# src/train.py
import argparse
from src.data.make_dataset import make_dataset
from src.models.train_model import train_model
def main(args):
data_dir = args.data_dir
model_dir = args.model_dir
make_dataset(data_dir)
train_model(data_dir, model_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train audio tagging model")
parser.add_argument("--data_dir", type=str, help="Directory containing the data")
parser.add_argument("--model_dir", type=str, help="Directory to save the model")
args = parser.parse_args()
main(args)
3. 项目的配置文件介绍
项目的配置文件通常是 config.yaml 或 config.json,用于存储项目的各种配置参数,如数据路径、模型参数等。
# config.yaml
data:
raw_dir: "data/raw"
processed_dir: "data/processed"
model:
epochs: 50
batch_size: 32
learning_rate: 0.001
train:
model_dir: "models"
在代码中读取配置文件的示例:
# src/utils/config.py
import yaml
def load_config(config_path):
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
return config
config = load_config("config.yaml")
通过以上步骤,您可以了解并运行 kaggle-freesound-audio-tagging 项目。希望这份教程对您有所帮助!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882