Volcano调度器中容量插件对层级队列资源检查的缺陷分析
2025-06-12 00:17:55作者:田桥桑Industrious
问题背景
在Volcano调度器的容量插件(capacity plugin)中,存在一个关于层级队列(hierarchical queues)资源分配检查的重要缺陷。该插件当前仅检查叶子队列(leaf queue)的实际容量(real-capability),而忽略了其父队列的资源限制,这可能导致资源分配超出父队列的容量限制。
当前实现的问题
容量插件通过allocatableFn函数在调度会话开始时添加可分配性检查。该函数目前仅验证叶子队列是否有足够资源承载候选任务的资源需求。这种实现存在以下问题:
-
层级队列资源溢出风险:当叶子队列通过检查但其父队列资源不足时,系统仍会允许分配,导致父队列资源被超额占用。
-
回收(reclaim)动作受阻:当前的检查机制同时用于分配(allocate)和回收(reclaim)动作,在回收场景下可能导致合理的资源回收被错误阻止。
问题示例分析
考虑一个典型的层级队列结构:
- 根队列(root)有6Gi内存容量
- 子队列queue1无保障(guarantee)设置
- queue1有两个子队列queue11和queue12
- queue12又有子队列queue121
假设queue11已分配4Gi,queue121需要2Gi。当前实现中:
- queue121作为叶子队列可以通过容量检查
- 但实际分配会导致queue1总分配达到6Gi,超过其实际容量
- 同时回收动作会被queue1的容量限制阻止
解决方案探讨
经过深入讨论,我们确定了几个改进方向:
-
层级检查机制:需要检查从叶子队列到根队列的完整路径上所有队列的容量限制,而不仅是叶子队列。
-
区分分配与回收:为两种操作设计不同的检查逻辑:
- 分配时需要检查完整路径
- 回收时只需检查被回收队列的直接父队列
-
插件架构调整:考虑将容量检查逻辑从AllocatableFn迁移到Preemptive阶段,使架构更清晰。
技术实现建议
建议采用以下改进方案:
queueAllocatable := func(queue *api.QueueInfo, candidate *api.TaskInfo) bool {
attr := cp.queueOpts[queue.UID]
futureUsed := attr.allocated.Clone().Add(candidate.Resreq)
return futureUsed.LessEqualWithDimension(attr.realCapability, candidate.Resreq)
}
ssn.AddAllocatableFn(cp.Name(), func(queue *api.QueueInfo, candidate *api.TaskInfo) bool {
if !readyToSchedule {
return false
}
if hierarchyEnabled {
if !cp.isLeafQueue(queue.UID) {
return false
}
allocatable := queueAllocatable(queue, candidate)
for _, parentID := range cp.queueOpts[queue.UID].parents {
if !queueAllocatable(ssn.Queues[parentID], candidate) {
allocatable = false
break
}
}
return allocatable
}
return queueAllocatable(queue, candidate)
})
总结
Volcano调度器的容量插件需要增强对层级队列的资源检查能力。通过实现完整的队列层级检查机制,并区分分配与回收场景的不同处理逻辑,可以确保系统资源分配的合理性和公平性。这一改进将显著提升调度器在复杂队列结构下的资源管理能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134