Volcano调度器中层次化队列的资源配额校验问题分析
2025-06-12 15:33:48作者:翟萌耘Ralph
问题背景
在Volcano调度器v1.11.0版本中,当使用层次化队列(Hierarchical Queue)功能时,发现了一个关于资源配额校验的重要缺陷。该问题会导致父队列的资源配额无法正确限制子队列的资源使用,从而可能造成集群资源被过度分配的情况。
层次化队列设计原理
Volcano的层次化队列设计允许管理员创建多级队列结构,类似于文件系统的目录结构。在这种设计中:
- 每个队列都可以设置自己的资源容量(capacity)
- 子队列的资源使用会累计到父队列中
- 作业(Job)在入队时应该逐级检查所有祖先队列的资源可用性
这种设计可以实现细粒度的资源隔离和配额管理,特别适合大型集群中多团队、多项目共享资源的场景。
问题具体表现
在现有实现中,当提交作业到某个子队列时,系统仅检查该子队列本身的资源配额,而没有向上递归检查所有祖先队列的资源可用性。这会导致以下异常情况:
- 创建三个队列:test-root(父队列,容量2CPU/4GiB)、test-sub-0和test-sub-1(同为test-root的子队列)
- 向test-sub-0提交job-1,请求2CPU/4GiB资源 - 可以正常入队
- 向test-sub-1提交job-2,同样请求2CPU/4GiB资源 - 也能入队并创建Pending Pod
按照预期,test-root队列的总容量为2CPU/4GiB,当job-1已经占满全部资源后,job-2应该被拒绝入队。
问题根源分析
经过代码审查,发现问题出在JobEnqueueable
函数的实现逻辑上。该函数目前存在两个关键缺陷:
- 祖先队列校验缺失:函数仅检查目标队列本身的资源可用性,没有递归检查所有父队列直至根队列
- 资源更新不完整:当作业入队时,仅更新目标队列的inqueue资源计数,没有同步更新所有祖先队列的计数
这种实现违背了层次化队列的基本设计原则,使得父队列的资源配额失去约束作用。
解决方案设计
要解决这个问题,需要对JobEnqueueable
函数进行以下改进:
- 递归校验机制:从目标队列开始,向上遍历所有祖先队列,逐级检查资源可用性
- 原子性更新:当作业可以入队时,需要原子性地更新目标队列及其所有祖先队列的inqueue资源计数
- 失败回滚:如果在更新过程中任何一级队列资源不足,需要回滚之前已经更新的资源计数
改进后的伪代码逻辑大致如下:
func JobEnqueueable(job, queue) bool {
// 获取队列层级路径
ancestors := getAncestorQueues(queue)
// 预检查所有祖先队列资源
for _, q := range append(ancestors, queue) {
if !q.hasEnoughResource(job) {
return false
}
}
// 原子性更新所有相关队列
for _, q := range append(ancestors, queue) {
if !q.allocateResource(job) {
// 回滚已更新的队列
rollbackAllocations()
return false
}
}
return true
}
实现注意事项
在实际实现中,还需要考虑以下工程细节:
- 并发控制:需要妥善处理多个调度器线程同时操作队列资源的竞争条件
- 性能优化:对于深层次的队列结构,避免不必要的锁争用和重复计算
- 错误处理:确保在任何失败情况下都能正确回滚资源计数
- 日志追踪:增加详细的调试日志,便于问题诊断
总结
Volcano调度器的层次化队列功能为企业级资源管理提供了强大的能力,但需要确保资源配额校验的完整性和正确性。本次发现的问题虽然影响范围有限,但在资源紧张的集群环境中可能导致严重的资源超卖情况。通过完善JobEnqueueable
函数的实现逻辑,可以确保层次化队列的资源隔离特性得到严格执行,为集群管理员提供可靠的资源管控能力。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0371Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.19 K

暂无简介
Dart
516
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193