Volcano调度器中层次化队列的资源配额校验问题分析
2025-06-12 15:33:48作者:翟萌耘Ralph
问题背景
在Volcano调度器v1.11.0版本中,当使用层次化队列(Hierarchical Queue)功能时,发现了一个关于资源配额校验的重要缺陷。该问题会导致父队列的资源配额无法正确限制子队列的资源使用,从而可能造成集群资源被过度分配的情况。
层次化队列设计原理
Volcano的层次化队列设计允许管理员创建多级队列结构,类似于文件系统的目录结构。在这种设计中:
- 每个队列都可以设置自己的资源容量(capacity)
- 子队列的资源使用会累计到父队列中
- 作业(Job)在入队时应该逐级检查所有祖先队列的资源可用性
这种设计可以实现细粒度的资源隔离和配额管理,特别适合大型集群中多团队、多项目共享资源的场景。
问题具体表现
在现有实现中,当提交作业到某个子队列时,系统仅检查该子队列本身的资源配额,而没有向上递归检查所有祖先队列的资源可用性。这会导致以下异常情况:
- 创建三个队列:test-root(父队列,容量2CPU/4GiB)、test-sub-0和test-sub-1(同为test-root的子队列)
- 向test-sub-0提交job-1,请求2CPU/4GiB资源 - 可以正常入队
- 向test-sub-1提交job-2,同样请求2CPU/4GiB资源 - 也能入队并创建Pending Pod
按照预期,test-root队列的总容量为2CPU/4GiB,当job-1已经占满全部资源后,job-2应该被拒绝入队。
问题根源分析
经过代码审查,发现问题出在JobEnqueueable
函数的实现逻辑上。该函数目前存在两个关键缺陷:
- 祖先队列校验缺失:函数仅检查目标队列本身的资源可用性,没有递归检查所有父队列直至根队列
- 资源更新不完整:当作业入队时,仅更新目标队列的inqueue资源计数,没有同步更新所有祖先队列的计数
这种实现违背了层次化队列的基本设计原则,使得父队列的资源配额失去约束作用。
解决方案设计
要解决这个问题,需要对JobEnqueueable
函数进行以下改进:
- 递归校验机制:从目标队列开始,向上遍历所有祖先队列,逐级检查资源可用性
- 原子性更新:当作业可以入队时,需要原子性地更新目标队列及其所有祖先队列的inqueue资源计数
- 失败回滚:如果在更新过程中任何一级队列资源不足,需要回滚之前已经更新的资源计数
改进后的伪代码逻辑大致如下:
func JobEnqueueable(job, queue) bool {
// 获取队列层级路径
ancestors := getAncestorQueues(queue)
// 预检查所有祖先队列资源
for _, q := range append(ancestors, queue) {
if !q.hasEnoughResource(job) {
return false
}
}
// 原子性更新所有相关队列
for _, q := range append(ancestors, queue) {
if !q.allocateResource(job) {
// 回滚已更新的队列
rollbackAllocations()
return false
}
}
return true
}
实现注意事项
在实际实现中,还需要考虑以下工程细节:
- 并发控制:需要妥善处理多个调度器线程同时操作队列资源的竞争条件
- 性能优化:对于深层次的队列结构,避免不必要的锁争用和重复计算
- 错误处理:确保在任何失败情况下都能正确回滚资源计数
- 日志追踪:增加详细的调试日志,便于问题诊断
总结
Volcano调度器的层次化队列功能为企业级资源管理提供了强大的能力,但需要确保资源配额校验的完整性和正确性。本次发现的问题虽然影响范围有限,但在资源紧张的集群环境中可能导致严重的资源超卖情况。通过完善JobEnqueueable
函数的实现逻辑,可以确保层次化队列的资源隔离特性得到严格执行,为集群管理员提供可靠的资源管控能力。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K