《Google 地标识别2021竞赛冠军项目安装与配置指南》
2025-04-18 00:30:31作者:平淮齐Percy
1. 项目基础介绍
本项目是基于2021年Google举办的地标识别与检索竞赛的冠军解决方案。该竞赛旨在识别和检索大规模地标图像。本项目包含的代码和模型结构,是基于分布式数据并行训练的,使用了8xV100 NVIDIA GPU。本项目采用的主要编程语言是Python和Jupyter Notebook。
2. 项目使用的关键技术和框架
本项目使用的关键技术包括但不限于:
- EfficientNet: 一种高效的网络结构,用于提高模型的准确度同时减少计算资源消耗。
- Swin Transformer: 一种基于Transformer架构的图像处理模型,用于提取图像特征。
- DOLG (Deep Overall Local Features): 一种深度学习模型,用于提取图像的局部特征,增强检索能力。
使用的框架和库包括:
- PyTorch: 用于构建和训练深度学习模型。
- NumPy: 用于数值计算。
- Pandas: 用于数据处理。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统: Ubuntu 18.04 或更高版本。
- Python: 版本 3.6 - 3.8。
- NVIDIA GPU: 具备CUDA计算能力的GPU。
- CUDA Toolkit: 与您的GPU兼容的版本。
安装步骤
-
克隆项目仓库:
git clone https://github.com/ChristofHenkel/kaggle-landmark-2021-1st-place.git cd kaggle-landmark-2021-1st-place -
安装项目依赖:
pip install -r requirements.txt -
配置环境变量(如果需要):
根据您的系统配置,可能需要设置一些环境变量,例如
PATH和PYTHONPATH,以确保Python可以找到所有必要的库。 -
准备数据集:
下载并解压Google地标数据集,放置到项目的
data目录下。 -
检查模型权重和配置文件:
确保模型权重文件和配置文件位于正确的目录中。
完成以上步骤后,您应该已经可以开始运行项目中的代码,进行模型的训练或推理了。
请注意,本项目提供的代码和模型结构仅供参考和学习,具体训练和推理的细节可能需要您根据实际环境和需求进行调整。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python案例资源下载 - 从入门到精通的完整项目代码合集 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
666
153
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
300
Ascend Extension for PyTorch
Python
216
235
React Native鸿蒙化仓库
JavaScript
255
320
仓颉编译器源码及 cjdb 调试工具。
C++
133
866
仓颉编程语言运行时与标准库。
Cangjie
141
876
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
650
仓颉编程语言开发者文档。
59
819