Google Landmark Recognition 2021 第一名开源项目使用指南
2025-04-18 15:13:15作者:柏廷章Berta
1. 项目介绍
本项目包含了在2021年Google Landmark Recognition / Retrieval竞赛中获得第一名的代码库。该竞赛由Kaggle平台主办,竞赛的目标是识别和检索世界各地的地标图片。本项目采用了多种深度学习模型,如EfficientNet和Hybrid-Swin-Transformers,并在大型GPU集群上进行训练,以达到优异的性能。
2. 项目快速启动
在开始之前,请确保您的环境中已安装了必要的依赖库。以下是一个基本的快速启动指南:
首先,克隆项目仓库:
git clone https://github.com/ChristofHenkel/kaggle-landmark-2021-1st-place.git
cd kaggle-landmark-2021-1st-place
然后,安装项目所需的所有Python依赖项:
pip install -r requirements.txt
目前,项目仓库中包含数据集、模型架构和超参数配置文件,但缺少详细的训练和推理脚本。您可以根据以下的基本代码结构开始:
# 导入必要的库
from models import YourModel
from data import YourDataset
# 加载数据集
dataset = YourDataset()
# 初始化模型
model = YourModel()
# 训练模型
model.train(dataset)
# 进行预测
predictions = model.predict(dataset)
请注意,您需要根据项目中的实际情况替换YourModel和YourDataset为实际使用的模型和数据集类。
3. 应用案例和最佳实践
在应用案例中,本项目展示了如何使用深度特征正交性和Hybrid-Swin-Transformers进行高效的大规模图像检索。以下是一些最佳实践:
- 数据预处理:使用适当的数据增强技术来提升模型的泛化能力。
- 模型选择:根据任务需求和数据特性选择合适的模型架构。
- 超参数调优:通过多次实验来找到最优的超参数配置。
4. 典型生态项目
本项目是深度学习和计算机视觉领域的典型开源项目,其生态包括但不限于:
- 数据集:Google Landmark数据集,包含了全球各地的地标图片。
- 模型库:EfficientNet系列模型,适用于图像识别和检索任务。
- 训练框架:PyTorch或TensorFlow,用于模型的训练和验证。
通过研究和使用本项目,您可以获得在图像检索领域的前沿技术和实践经验。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895