TiDB Vector Python SDK 指南
2024-08-07 23:22:51作者:平淮齐Percy
项目介绍
TiDB Vector Python SDK 是一款专为 TiDB Vector 设计的 Python 客户端,它支持与 TiDB 云 Serverless 集群进行高效的数据交互,特别是处理向量数据类型。该SDK允许开发者利用Python轻松集成向量搜索功能,对文本、图像等数据进行高效的近似相似度检索。通过此SDK,你可以将知识图谱存储于TiDB Serverless中,并实现复杂查询,使得应用程序能够执行语义级别上的精确搜索。
项目快速启动
环境准备
确保你的开发环境已安装 Python 3.8 或更高版本,以及 Git。
安装 TiDB Vector Python SDK
在终端中运行以下命令来安装必要的库:
pip install tidb-vector
对于更高级的用例,如果要使用SQLAlchemy集成,应安装客户端扩展:
pip install tidb-vector[client]
示例代码 - 快速上手
假设你要将一些文本数据及其嵌入表示存储到TiDB,并执行一个简单的查询。
from tidb_vector.integrations import TiDBVectorClient
# 初始化连接和表配置
TABLE_NAME = 'vector_test'
CONNECTION_STRING = 'mysql+pymysql://<USER>:<PASSWORD>@<HOST>:4000/<DB>?ssl_verify_cert=true&ssl_verify_identity=true'
VECTOR_DIMENSION = 1536 # 假设Ada模型的维度
# 创建客户端实例
tidb_vs = TiDBVectorClient(
table_name=TABLE_NAME,
connection_string=CONNECTION_STRING,
vector_dimension=VECTOR_DIMENSION,
drop_existing_table=True # 如需重置表结构
)
# 准备数据(示例)
texts = ["示例文本1", "示例文本2"]
embeddings = [text_to_embedding(text) for text in texts] # 假定text_to_embedding函数用于获取文本的向量表示
metadatas = [{"tag": "example"} for _ in texts]
# 执行批量插入
tidb_vs.insert(texts=texts, embeddings=embeddings, metadatas=metadatas)
# 查询最相似的文档
query_embedding = text_to_embedding("查询文本")
results = tidb_vs.query(query_embedding, k=2)
print(results)
请替换 <USER>
、<PASSWORD>
、<HOST>
和 <DB>
为你实际的数据库连接信息,并确保你的环境中有一个适当的文本转嵌入的逻辑或库(如Hugging Face Transformers)来实现 text_to_embedding
功能。
应用案例和最佳实践
知识图谱构建与搜索
可以使用TiDB Vector存储知识图谱中的节点和边的嵌入,从而加速基于语义的搜索和推荐系统。
实时相似性搜索
结合Jina AI或其他嵌入技术,对产品描述、用户评论等进行即时的相似项查找,提升用户体验。
半监督学习与增强学习场景
利用向量存储特性,辅助训练过程中的数据选取和反馈循环,提高模型性能。
典型生态项目
- TiDB Cloud: 直接支持Serverless环境下的向量数据处理,简化部署和管理。
- Jina AI: 作为强大的嵌入生成工具,常与TiDB Vector搭配,构建复杂的语义搜索解决方案。
- SQLAlchemy集成: 使用Python中的ORM框架与TiDB Vector进行优雅的数据访问和操作,适用于需要高度抽象化的应用程序开发。
记得,TiDB Vector SDK尚处于快速发展阶段,特别是在Serverless集群中,因此密切关注其更新和文档,以便充分利用最新功能和优化。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
867
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3