TiDB Vector Python SDK 指南
2024-08-07 23:22:51作者:平淮齐Percy
项目介绍
TiDB Vector Python SDK 是一款专为 TiDB Vector 设计的 Python 客户端,它支持与 TiDB 云 Serverless 集群进行高效的数据交互,特别是处理向量数据类型。该SDK允许开发者利用Python轻松集成向量搜索功能,对文本、图像等数据进行高效的近似相似度检索。通过此SDK,你可以将知识图谱存储于TiDB Serverless中,并实现复杂查询,使得应用程序能够执行语义级别上的精确搜索。
项目快速启动
环境准备
确保你的开发环境已安装 Python 3.8 或更高版本,以及 Git。
安装 TiDB Vector Python SDK
在终端中运行以下命令来安装必要的库:
pip install tidb-vector
对于更高级的用例,如果要使用SQLAlchemy集成,应安装客户端扩展:
pip install tidb-vector[client]
示例代码 - 快速上手
假设你要将一些文本数据及其嵌入表示存储到TiDB,并执行一个简单的查询。
from tidb_vector.integrations import TiDBVectorClient
# 初始化连接和表配置
TABLE_NAME = 'vector_test'
CONNECTION_STRING = 'mysql+pymysql://<USER>:<PASSWORD>@<HOST>:4000/<DB>?ssl_verify_cert=true&ssl_verify_identity=true'
VECTOR_DIMENSION = 1536 # 假设Ada模型的维度
# 创建客户端实例
tidb_vs = TiDBVectorClient(
table_name=TABLE_NAME,
connection_string=CONNECTION_STRING,
vector_dimension=VECTOR_DIMENSION,
drop_existing_table=True # 如需重置表结构
)
# 准备数据(示例)
texts = ["示例文本1", "示例文本2"]
embeddings = [text_to_embedding(text) for text in texts] # 假定text_to_embedding函数用于获取文本的向量表示
metadatas = [{"tag": "example"} for _ in texts]
# 执行批量插入
tidb_vs.insert(texts=texts, embeddings=embeddings, metadatas=metadatas)
# 查询最相似的文档
query_embedding = text_to_embedding("查询文本")
results = tidb_vs.query(query_embedding, k=2)
print(results)
请替换 <USER>、<PASSWORD>、<HOST> 和 <DB> 为你实际的数据库连接信息,并确保你的环境中有一个适当的文本转嵌入的逻辑或库(如Hugging Face Transformers)来实现 text_to_embedding 功能。
应用案例和最佳实践
知识图谱构建与搜索
可以使用TiDB Vector存储知识图谱中的节点和边的嵌入,从而加速基于语义的搜索和推荐系统。
实时相似性搜索
结合Jina AI或其他嵌入技术,对产品描述、用户评论等进行即时的相似项查找,提升用户体验。
半监督学习与增强学习场景
利用向量存储特性,辅助训练过程中的数据选取和反馈循环,提高模型性能。
典型生态项目
- TiDB Cloud: 直接支持Serverless环境下的向量数据处理,简化部署和管理。
- Jina AI: 作为强大的嵌入生成工具,常与TiDB Vector搭配,构建复杂的语义搜索解决方案。
- SQLAlchemy集成: 使用Python中的ORM框架与TiDB Vector进行优雅的数据访问和操作,适用于需要高度抽象化的应用程序开发。
记得,TiDB Vector SDK尚处于快速发展阶段,特别是在Serverless集群中,因此密切关注其更新和文档,以便充分利用最新功能和优化。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.27 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
402
仓颉编程语言运行时与标准库。
Cangjie
130
415