TiDB Vector Python SDK 指南
2024-08-07 23:22:51作者:平淮齐Percy
项目介绍
TiDB Vector Python SDK 是一款专为 TiDB Vector 设计的 Python 客户端,它支持与 TiDB 云 Serverless 集群进行高效的数据交互,特别是处理向量数据类型。该SDK允许开发者利用Python轻松集成向量搜索功能,对文本、图像等数据进行高效的近似相似度检索。通过此SDK,你可以将知识图谱存储于TiDB Serverless中,并实现复杂查询,使得应用程序能够执行语义级别上的精确搜索。
项目快速启动
环境准备
确保你的开发环境已安装 Python 3.8 或更高版本,以及 Git。
安装 TiDB Vector Python SDK
在终端中运行以下命令来安装必要的库:
pip install tidb-vector
对于更高级的用例,如果要使用SQLAlchemy集成,应安装客户端扩展:
pip install tidb-vector[client]
示例代码 - 快速上手
假设你要将一些文本数据及其嵌入表示存储到TiDB,并执行一个简单的查询。
from tidb_vector.integrations import TiDBVectorClient
# 初始化连接和表配置
TABLE_NAME = 'vector_test'
CONNECTION_STRING = 'mysql+pymysql://<USER>:<PASSWORD>@<HOST>:4000/<DB>?ssl_verify_cert=true&ssl_verify_identity=true'
VECTOR_DIMENSION = 1536 # 假设Ada模型的维度
# 创建客户端实例
tidb_vs = TiDBVectorClient(
table_name=TABLE_NAME,
connection_string=CONNECTION_STRING,
vector_dimension=VECTOR_DIMENSION,
drop_existing_table=True # 如需重置表结构
)
# 准备数据(示例)
texts = ["示例文本1", "示例文本2"]
embeddings = [text_to_embedding(text) for text in texts] # 假定text_to_embedding函数用于获取文本的向量表示
metadatas = [{"tag": "example"} for _ in texts]
# 执行批量插入
tidb_vs.insert(texts=texts, embeddings=embeddings, metadatas=metadatas)
# 查询最相似的文档
query_embedding = text_to_embedding("查询文本")
results = tidb_vs.query(query_embedding, k=2)
print(results)
请替换 <USER>、<PASSWORD>、<HOST> 和 <DB> 为你实际的数据库连接信息,并确保你的环境中有一个适当的文本转嵌入的逻辑或库(如Hugging Face Transformers)来实现 text_to_embedding 功能。
应用案例和最佳实践
知识图谱构建与搜索
可以使用TiDB Vector存储知识图谱中的节点和边的嵌入,从而加速基于语义的搜索和推荐系统。
实时相似性搜索
结合Jina AI或其他嵌入技术,对产品描述、用户评论等进行即时的相似项查找,提升用户体验。
半监督学习与增强学习场景
利用向量存储特性,辅助训练过程中的数据选取和反馈循环,提高模型性能。
典型生态项目
- TiDB Cloud: 直接支持Serverless环境下的向量数据处理,简化部署和管理。
- Jina AI: 作为强大的嵌入生成工具,常与TiDB Vector搭配,构建复杂的语义搜索解决方案。
- SQLAlchemy集成: 使用Python中的ORM框架与TiDB Vector进行优雅的数据访问和操作,适用于需要高度抽象化的应用程序开发。
记得,TiDB Vector SDK尚处于快速发展阶段,特别是在Serverless集群中,因此密切关注其更新和文档,以便充分利用最新功能和优化。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
278
暂无简介
Dart
639
145
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100