SimSIMD 项目教程
2024-08-18 16:36:41作者:谭伦延
项目介绍
SimSIMD 是一个用于硬件加速相似度度量和距离函数的开源项目。它支持多种硬件平台,包括 ARM NEON、SVE 和 x86 AVX2、AVX-512。SimSIMD 通过优化向量操作和避免对齐问题,提供了高效的相似度计算功能。
项目快速启动
安装
首先,你需要克隆 SimSIMD 的仓库到本地:
git clone https://github.com/ashvardanian/SimSIMD.git
cd SimSIMD
编译
使用 CMake 进行编译:
mkdir build
cd build
cmake ..
make
使用示例
以下是一个简单的使用示例,展示了如何在 C++ 项目中使用 SimSIMD:
#include <simsimd/simsimd.h>
#include <iostream>
int main() {
float vec1[] = {1.0, 2.0, 3.0, 4.0};
float vec2[] = {4.0, 3.0, 2.0, 1.0};
float distance = simsimd_cos_f32x4_neon(vec1, vec2, 4);
std::cout << "Cosine distance: " << distance << std::endl;
return 0;
}
编译并运行这个示例:
g++ -o example example.cpp -I/path/to/simsimd/include -L/path/to/simsimd/lib -lsimsimd
./example
应用案例和最佳实践
应用案例
SimSIMD 可以广泛应用于需要高效相似度计算的场景,例如:
- 图像处理:在图像识别和匹配中,使用 SimSIMD 可以加速特征向量的相似度计算。
- 自然语言处理:在文本相似度计算和语义搜索中,SimSIMD 可以提高处理速度。
- 推荐系统:在用户和物品的相似度计算中,SimSIMD 可以加速推荐算法的执行。
最佳实践
- 选择合适的 ISA 扩展:根据目标硬件平台选择合适的 ISA 扩展(如 NEON、SVE、AVX2、AVX-512)。
- 避免数据对齐问题:确保输入向量的长度符合 SimSIMD 函数的约束条件。
- 优化编译选项:使用
-O3和-march=native等编译选项进行优化。
典型生态项目
SimSIMD 可以与其他开源项目结合使用,例如:
- USearch:一个高效的向量搜索引擎,可以使用 SimSIMD 进行相似度计算。
- NumPy 和 SciPy:在 Python 中进行科学计算时,可以使用 SimSIMD 加速相似度计算。
- TensorFlow 和 PyTorch:在深度学习框架中,可以使用 SimSIMD 加速嵌入向量的相似度计算。
通过结合这些生态项目,可以进一步扩展 SimSIMD 的应用场景和性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
477
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.21 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258