Make-It-Animatable项目安装与配置指南
2025-04-21 02:17:28作者:侯霆垣
1. 项目基础介绍
Make-It-Animatable是一个高效创建动画就绪3D角色的框架。此项目旨在为用户提供一种便捷的方法,通过训练神经网络模型来自动化生成3D角色的动画。该项目主要使用Python编程语言开发。
2. 项目使用的关键技术和框架
- Blender: 一个开源的3D创作套件,用于在训练过程中处理和生成3D数据。
- PyTorch: 一个流行的开源机器学习库,用于构建和训练神经网络。
- FBX2glTF: 一个FBX到glTF转换工具,用于在演示中转换模型格式。
- 3DGS Render Blender Addon: 由KIRI Engine提供的Blender插件,用于渲染。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的计算机满足以下条件:
- 安装有Python环境(建议使用Anaconda以方便管理虚拟环境)。
- 安装有Git版本控制系统。
- 确保您的计算机有足够的存储空间和内存来处理3D数据和训练神经网络。
安装步骤
克隆项目
首先,您需要克隆项目到本地环境:
git clone https://github.com/jasongzy/Make-It-Animatable.git --recursive --single-branch
cd Make-It-Animatable
设置虚拟环境
项目使用conda来管理虚拟环境,分别用于训练和演示。首先创建并激活训练环境:
conda create -n mia python=3.10
conda activate mia
然后安装项目所需的依赖:
pip install -r requirements.txt
接下来,创建并激活演示环境(注意,演示环境和训练环境使用不同版本的Python):
conda create -n mia-demo python=3.11
conda activate mia-demo
安装演示环境所需的依赖:
pip install -r requirements-demo.txt
数据准备
项目需要下载特定数据集,可以使用以下命令:
git lfs install
GIT_LFS_SKIP_SMUDGE=1 git -C data clone https://huggingface.co/datasets/jasongzy/Mixamo
git -C data/Mixamo submodule update --init
根据您是进行训练还是演示,下载相应的数据:
- 训练数据:
git -C data/Mixamo lfs pull -I 'bones*.fbx,animation,animation_extra,character_refined,character_rabit_refined'
- 演示数据:
git -C /tmp/hf-data lfs pull -I output/best/new
mkdir -p output/best
cp -r /tmp/hf-data/output/best/new output/best/
git -C /tmp/hf-data lfs pull -I data
cp -r /tmp/hf-data/data/ data/
此外,还需要下载FBX2glTF工具并赋予执行权限:
wget https://github.com/facebookincubator/FBX2glTF/releases/download/v0.9.7/FBX2glTF-linux-x64 -O util/FBX2glTF
chmod +x util/FBX2glTF
开始训练或演示
- 启动演示:
conda activate mia-demo
python app.py
- 启动训练:
conda activate mia
bash train.sh
请注意,根据您的硬件配置,可能需要调整train.sh
脚本中的参数,以适应您的GPU内存大小。
以上步骤即为Make-It-Animatable项目的详细安装和配置指南。按照这些步骤操作后,您应该能够顺利运行该项目。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0118DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析5 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp课程中屏幕放大器知识点优化分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp课程视频测验中的Tab键导航问题解析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
270

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
909
541

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
341
1.21 K

openGauss kernel ~ openGauss is an open source relational database management system
C++
142
188

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
377
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
63
58

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.1 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
87
4