预测股市未来:结合Transformer与LSTM的stoch-predict-with-Transformer-LSTM
2024-06-13 09:28:58作者:蔡丛锟
预测股市未来:结合Transformer与LSTM的stoch-predict-with-Transformer-LSTM
1、项目介绍
在金融投资领域,预测股票价格走势一直是研究的重点。stoch-predict-with-Transformer-LSTM是一个开源项目,它利用先进的机器学习模型(包括MLP、CNN、RNN、LSTM以及Transformer和Transformer-LSTM)来预测股票市场的短期波动。该项目提供了一个完整的环境配置、训练和评估流程,旨在帮助数据科学家和投资者探索股价预测的可能性。
2、项目技术分析
该项目基于Python 3.8和PyTorch框架构建,兼容Cuda 11.1,支持GPU加速。它采用了多种神经网络模型:
- MLP (多层感知机) 是基础的全连接网络,适用于处理线性问题。
- CNN (卷积神经网络) 利用局部关联性和权重共享,擅长图像识别,但也可应用于时间序列数据。
- RNN (循环神经网络) 和LSTM (长短时记忆网络) 是针对序列数据的优秀模型,尤其适合捕捉长期依赖关系。
- Transformer 是以自注意力机制为核心的新颖结构,擅长并行计算和长距离依赖建模。
- Transformer-LSTM 结合了两者的优点,既保持了Transformer的全局信息捕获能力,又借助LSTM处理序列动态变化。
3、项目及技术应用场景
stoch-predict-with-Transformer-LSTM 可广泛应用于金融市场,尤其是以下场景:
- 投资决策:通过对历史数据的学习,模型可以给出未来股票价格的预测,帮助投资者做出买入或卖出的选择。
- 风险管理:预测结果可以帮助金融机构估计市场风险,调整投资组合。
- 学术研究:对于数据科学和金融领域的研究人员,这是一个极好的实践平台,可探索不同模型在时间序列预测上的效果。
4、项目特点
- 模型多样性:提供了多种前沿模型供比较和选择,满足不同需求。
- 易于上手:通过简单的命令即可启动训练和评估过程,无需复杂配置。
- 可视化结果:内置绘图功能,直观展示预测结果,便于理解和分析。
- GPU支持:支持GPU加速训练,大大提高了计算效率。
要尝试这个项目,只需遵循readme中的指示创建虚拟环境,安装必要库,然后运行main.py进行训练和评估,使用plot.py绘制预测图表。立即行动起来,让智能预测为你的投资增添一份智慧吧!
项目地址:https://github.com/gangweiX/stoch-predict-with-Tranformer-LSTM
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350