【亲测免费】 Gaussian Splatting SLAM(MonoGS)快速入门与实践指南
项目介绍
Gaussian Splatting SLAM(简称MonoGS)是由Hidenobu Matsuki、Riku Murai等人在CVPR 2024上提出的亮点论文及最佳演示奖得主。该系统实现了首个仅基于3D高斯溅射的单目SLAM方法,同时也兼容立体和RGB-D输入。此技术通过高斯溅射技术实现密集型SLAM,提供了一个新的视角来处理实时三维重建和相机定位问题。项目页面提供了更多详情。
项目快速启动
克隆仓库与依赖安装
首先,你需要从GitHub克隆MonoGS项目,并递归获取子模块:
git clone https://github.com/muskie82/MonoGS.git --recursive
cd MonoGS
接着,设置环境,推荐使用Anaconda进行管理:
conda env create -f environment.yml
conda activate MonoGS
请注意,根据自己的系统配置,可能需要调整environment.yml文件中的PyTorch和CUDA版本。测试配置包括Ubuntu 20.04使用PyTorch==1.12.1和cudatoolkit==11.6。
快速演示
为了快速体验MonoGS,执行以下步骤来下载样例数据并运行示例配置:
bash scripts/download_tum.sh
python slam.py --config configs/mono/tum/fr3_office.yaml
这将启动GUI窗口,展示SLAM结果。
应用案例和最佳实践
MonoGS适用于多种场景,包括但不限于室内导航、机器人自主移动和增强现实应用。最佳实践建议是从简单的单目场景开始,逐步过渡到更复杂的RGB-D或立体视觉场景。对于实时性能要求高的场合,可以考虑使用开发中的加速分支(dev_speedup),它能在特定硬件上达到约10fps的速度而不牺牲跟踪精度。
实时演示
如果你拥有Intel RealSense D455或其他相似的全球快门摄像头,可以通过以下命令进行实时SLAM演示:
pip install pyrealsense2
python slam.py --config configs/live/realsense.yaml
确保摄像头连接稳定且通过USB-3接口连接。
典型生态项目
虽然该项目本身就是个独立的生态系统,但其技术灵感来源于多个开放源代码项目,如3D Gaussian Splatting、Differential Gaussian Rasterization等。这些技术的结合展现了SLAM领域内先进的研究方向。开发者和研究者可以参考这些项目进一步扩展SLAM的应用范围或者探索深度学习与几何SLAM的融合新方法。
本指南旨在帮助开发者迅速上手Gaussian Splatting SLAM项目,了解基本的安装流程和应用场景。实际操作中,深入阅读项目文档和研究论文将有助于更好地理解和利用此SLAM解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00