AWS Deep Learning Containers发布PyTorch 2.4.0推理容器镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化,可在AWS云环境中高效运行。DLC包含了主流深度学习框架如PyTorch、TensorFlow等的最新版本,以及必要的依赖库和工具,帮助开发者快速部署深度学习应用,而无需花费时间配置环境。
近日,AWS DLC项目发布了PyTorch 2.4.0推理容器镜像,支持Python 3.11环境,为开发者提供了最新的PyTorch推理能力。这些镜像针对CPU和GPU(CUDA 12.4)分别进行了优化,基于Ubuntu 22.04操作系统构建。
镜像版本与特性
本次发布的PyTorch推理容器镜像包含两个主要版本:
-
CPU版本:
pytorch-inference:2.4.0-cpu-py311-ubuntu22.04-sagemaker-v1.24- 基于Ubuntu 22.04操作系统
- 预装PyTorch 2.4.0(CPU版本)
- 包含TorchServe 0.12.0模型服务工具
- 支持Python 3.11环境
-
GPU版本:
pytorch-inference:2.4.0-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.24- 基于Ubuntu 22.04操作系统
- 预装PyTorch 2.4.0(CUDA 12.4版本)
- 包含TorchServe 0.12.0模型服务工具
- 支持Python 3.11环境
- 预装CUDA 12.4相关库和工具
关键软件包版本
两个镜像都预装了深度学习开发常用的软件包,确保开箱即用:
- PyTorch生态:torch 2.4.0、torchvision 0.19.0、torchaudio 2.4.0
- 数据处理:numpy 2.1.2、pandas 2.2.3、scipy 1.14.1
- 机器学习工具:scikit-learn 1.5.2
- 图像处理:opencv-python 4.10.0.84、Pillow 11.0.0
- AWS工具:awscli 1.35.12、boto3 1.35.46
- 构建工具:ninja 1.11.1.1、Cython 3.0.11
GPU版本额外包含了CUDA 12.4相关的库文件,如cuBLAS 12-4和cuDNN 9(CUDA 12版本),以及MPI支持(mpi4py 4.0.1)。
技术优势
使用AWS Deep Learning Containers的PyTorch推理镜像具有以下优势:
- 性能优化:镜像经过AWS专门优化,在EC2实例上能够发挥最佳性能
- 版本兼容性:所有依赖包版本经过严格测试,确保兼容性
- 安全可靠:基于Ubuntu 22.04 LTS构建,定期更新安全补丁
- 简化部署:预装TorchServe等工具,简化模型服务化流程
- 多环境支持:同时提供CPU和GPU版本,满足不同计算需求
使用场景
这些PyTorch推理容器镜像特别适合以下场景:
- 在SageMaker上部署PyTorch模型服务
- 构建批处理推理流水线
- 开发基于PyTorch的AI服务
- 快速搭建PyTorch开发环境
- 需要稳定、高性能PyTorch运行环境的项目
AWS Deep Learning Containers的持续更新确保了开发者能够始终使用最新的深度学习框架版本和工具,同时享受AWS云环境的优化性能。这些预构建镜像大大降低了深度学习应用的部署门槛,让开发者可以更专注于模型开发和业务逻辑实现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00