推荐文章:平台感知的移动神经网络——MnasNet
2024-05-23 19:53:01作者:翟江哲Frasier
1、项目介绍
在深度学习领域中,针对移动端优化的轻量级模型一直是研究的热点。MnasNet是一个基于PyTorch实现的平台感知的神经网络架构搜索(NAS)框架,其设计目标是在保证性能的同时,为移动设备提供更高的运行效率。这个开源项目源自于论文《MnasNet: Platform-Aware Neural Architecture Search for Mobile》,该模型在ImageNet分类任务上取得了74.0%的top-1准确率,且在Pixel手机上的运行延迟仅为76ms,相比MobileNetV2,速度提升了1.5倍。
2、项目技术分析
MnasNet采用了神经架构搜索(NAS)的方法来自动构建适用于不同硬件平台的高效模型。它利用了多目标优化策略,在准确性与计算效率之间找到最佳平衡点。如图所示,MnasNet的网络结构包括一系列串联的膨胀卷积层,这种设计提高了模型的表达能力,同时减少了计算资源的消耗。此外,通过针对特定硬件平台进行优化,MnasNet能够在保持高性能的同时,实现更快的推理速度。

3、项目及技术应用场景
MnasNet不仅适用于图像分类任务,其高效的特性使其在移动应用开发中极具潜力。例如:
- 移动应用:嵌入到智能手机应用程序中,提供实时的图像识别或分析功能。
- 物联网设备:在资源有限的IoT设备上执行智能任务,如监控、安全和自动化控制。
- 边缘计算:在边缘设备上进行数据预处理,减少云端负载并保护用户隐私。
4、项目特点
- 平台感知:MnasNet能根据硬件平台的特性和资源限制自动调整网络结构,实现更优的性能和效率。
- 高精度低延迟:在保持高分类准确度的同时,将运行时间压缩至76ms,远超同类模型。
- 自动优化:通过 NAS 技术自动化地搜索最优网络架构,减轻了人工调参的负担。
- 易于集成:基于PyTorch实现,代码清晰易懂,方便与其他PyTorch项目集成。
综上所述,MnasNet是面向移动应用开发者的理想选择,它结合了先进的神经架构搜索技术和对硬件平台的深刻理解,提供了出色的性能和速度。如果你正在寻找一个能够提升你的移动应用体验的深度学习模型,MnasNet绝对值得尝试。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355