trlX 开源项目安装与使用教程
2024-09-22 01:12:21作者:咎竹峻Karen
项目简介
trlX 是一个专为通过强化学习结合人类反馈(RLHF)进行大规模语言模型微调而设计的分布式训练框架。它支持使用预定义的奖励函数或带有奖励标签的数据集来训练模型,并提供了对Hugging Face 🤗 加速器和NVIDIA NeMo两种分布式后端的支持。此项目涵盖了Proximal Policy Optimization (PPO)和Implicit Language Q-Learning (ILQL)两种强化学习算法。
目录结构及介绍
以下是trlX的基本项目结构,每部分简要说明了其功能:
devcontainer: 包含开发环境的相关配置。github: 存放GitHub相关的配置文件。configs: 包含训练过程中的各种配置模板。docs: 项目文档资料存放地。examples: 提供了一系列示例脚本和Notebook,帮助快速上手。scripts: 启动脚本和其他辅助脚本所在位置。tests: 单元测试和集成测试代码。trlx: 核心库代码,包含模型训练的主要逻辑。.gitignore,pre-commit-config.yaml,readthedocs.yml: 版本控制和文档构建相关配置。CODE_OF_CONDUCT.md,CONTRIBUTING.md,LICENSE: 项目行为准则、贡献指南和许可证文件。
项目的启动文件介绍
在examples目录下可以找到多个用于演示如何使用trlX的启动脚本。例如,如果你想运行基于GPT2模型的例子,通常需要首先配置好环境,然后通过Python命令执行对应的.py文件。例如,对于Simulacra示例,你可以通过类似以下命令启动:
python examples/simulacra.py
真正的启动流程还依赖于具体的示例需求和是否采用分布式设置,可能涉及更多参数配置或环境变量的设定。
项目的配置文件介绍
配置文件主要位于configs目录中,这些文件定义了训练过程的关键超参数。以default_ppo_config为例,该配置文件设定了用于PPO算法训练的默认参数,包括模型路径、批处理大小、序列长度等。用户可以根据需要调整这些配置以适应不同的训练场景。配置文件通常以YAML格式编写,便于读写和修改。例如:
# 假想的default_ppo_config示例片段
model:
model_path: "EleutherAI/gpt-neox-20b"
tokenizer:
tokenizer_path: "EleutherAI/gpt-neox-20b"
train:
seq_length: 2048
batch_size: 8 # 示例值,实际可能不同
要自定义配置,你可以复制基础配置文件并按需更改参数,或者在程序中动态指定配置字典。
注意:实际操作前,请确保阅读官方文档和示例脚本中的详细说明,以了解完整的初始化步骤、环境搭建和特定指令。上述信息仅提供了一个概览,具体细节可能会在项目更新中有所变化。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660