learndrake 项目教程
2024-09-16 17:58:10作者:余洋婵Anita
项目介绍
learndrake 是一个关于 drake R 包的免费在线短期课程。通过引导式的网络实践练习,你将逐步构建一个由 drake 驱动的机器学习项目,并练习 drake 的基本原理。drake 是一个用于可重复计算的 R 包,特别适用于需要频繁更新代码和数据的大型统计计算项目。
项目快速启动
安装 learndrake
首先,你需要安装 learndrake 包。你可以通过 GitHub 安装:
install.packages("remotes")
remotes::install_github("wlandau/learndrake")
运行课程材料
安装完成后,你可以通过以下代码运行课程材料:
library(learndrake)
save_notebooks() # 保存课程笔记本到本地
view_slides() # 在浏览器中查看介绍幻灯片
save_slides() # 保存介绍幻灯片到本地
launch_app() # 启动支持的 Shiny 应用
save_app() # 保存支持的 Shiny 应用代码文件
在 RStudio Cloud 上运行
你也可以在 RStudio Cloud 上运行课程材料。首先,注册一个免费的 RStudio Cloud 账户,然后登录到公共 RStudio Cloud 工作区:
https://rstudio.cloud/project/627076
在 IDE 的“Files”面板中,找到编号的文件夹,里面有 .Rmd 笔记本。按照顺序完成这些笔记本。
应用案例和最佳实践
案例:客户流失预测
learndrake 课程中的一个典型案例是使用深度神经网络预测客户流失。以下是构建和训练模型的步骤:
- 数据分割:将数据集分为训练集和测试集。
- 数据预处理:使用
recipe包对数据进行预处理。 - 模型定义:定义一个深度神经网络模型。
- 模型训练:使用训练数据训练模型。
- 模型评估:使用测试数据评估模型的准确性。
最佳实践
- 函数化:将所有操作封装在函数中,便于管理和重用。
- 增量开发:逐步构建和测试工作流程,确保每个步骤都能正常工作。
- 依赖管理:使用
drake的依赖管理功能,确保只有需要更新的部分才会重新计算。
典型生态项目
targets 包
targets 包是 drake 的长期继任者,更加健壮且易于使用。如果你正在寻找更现代的工作流程管理工具,可以考虑使用 targets 包。
keras 和 tensorflow
在机器学习项目中,keras 和 tensorflow 是常用的深度学习框架。learndrake 课程中也使用了这些工具来构建和训练神经网络模型。
shiny
shiny 是一个用于构建交互式网页应用的 R 包。在 learndrake 课程中,shiny 用于创建支持课程的交互式应用。
通过这些工具和最佳实践,你可以构建高效、可重复的机器学习工作流程。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
724
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
198
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460