PyTorch 1.0 中文文档教程
2024-08-16 09:56:55作者:魏献源Searcher
项目介绍
PyTorch 是一个基于 Python 的开源机器学习库,由 Facebook 的人工智能研究团队开发并维护。它支持动态计算图,并以其灵活性和易用性而受到广泛欢迎。PyTorch 1.0 引入了许多新特性,包括动态计算图、Eager Execution、torch jit 等,这些功能使得 PyTorch 更加易用,同时也提高了其性能和灵活性。
项目快速启动
安装 PyTorch
首先,确保你已经安装了 Python 和 pip。然后,使用以下命令安装 PyTorch:
pip install torch torchvision
简单示例
以下是一个简单的 PyTorch 示例,展示了如何创建一个张量并进行基本的数学运算:
import torch
# 创建一个张量
x = torch.tensor([1.0, 2.0, 3.0])
# 进行加法运算
y = x + 2
print(y)
应用案例和最佳实践
图像分类
PyTorch 提供了丰富的工具和预训练模型,使得图像分类任务变得简单。以下是一个使用预训练模型进行图像分类的示例:
import torch
import torchvision.models as models
import torchvision.transforms as transforms
from PIL import Image
# 加载预训练模型
model = models.resnet18(pretrained=True)
model.eval()
# 图像预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 加载图像
image = Image.open("path_to_image.jpg")
image = transform(image).unsqueeze(0)
# 进行预测
with torch.no_grad():
outputs = model(image)
_, predicted = outputs.max(1)
print(predicted)
文本分类
PyTorch 也可以用于自然语言处理任务,如文本分类。以下是一个简单的文本分类示例:
import torch
import torch.nn as nn
import torch.optim as optim
# 定义一个简单的文本分类模型
class TextClassifier(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(TextClassifier, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 初始化模型
model = TextClassifier(input_dim=100, hidden_dim=128, output_dim=2)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
典型生态项目
torchvision
torchvision 是 PyTorch 的一个官方库,提供了常用的数据集、模型架构和图像转换工具。它使得图像处理和计算机视觉任务变得更加简单。
torchtext
torchtext 是 PyTorch 的一个官方库,专注于自然语言处理任务。它提供了文本数据处理工具和常用的数据集,使得文本处理和 NLP 任务变得更加高效。
torchaudio
torchaudio 是 PyTorch 的一个官方库,专注于音频处理任务。它提供了音频数据处理工具和常用的数据集,使得音频处理和语音识别任务变得更加简单。
通过这些生态项目,PyTorch 构建了一个
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896