首页
/ 基于图嵌入的推荐系统:Graph-Embedding-For-Recommendation-System

基于图嵌入的推荐系统:Graph-Embedding-For-Recommendation-System

2024-09-17 00:19:18作者:温艾琴Wonderful

项目介绍

在当今信息爆炸的时代,推荐系统已成为各大平台不可或缺的一部分。然而,传统的推荐算法往往难以捕捉用户与物品之间的复杂关系。为了解决这一问题,我们推出了Graph-Embedding-For-Recommendation-System项目,这是一个基于Python的图传播算法,利用DeepWalk技术在异构信息网络中评估和比较偏好传播算法。

该项目的主要目标是预测用户对尚未评分的物品的偏好,通过图嵌入技术实现协同过滤。具体来说,我们首先利用电影评分数据集构建了一个包含用户、电影及其相关实体(如演员、导演)的异构图网络。随后,使用DeepWalk生成随机游走序列,并通过Word2Vec将这些序列嵌入到低维空间中。最终,通过计算用户节点与电影评分节点之间的相似度,预测用户对电影的评分。

项目技术分析

核心技术:DeepWalk

DeepWalk是一种基于随机游走的图嵌入技术,能够有效地捕捉图结构中的局部和全局信息。通过在图中进行随机游走,DeepWalk能够生成一系列节点序列,这些序列类似于自然语言中的句子。随后,使用Word2Vec模型将这些序列嵌入到低维空间中,从而实现节点的高效表示。

技术实现

  1. 数据预处理:从电影评分数据集中提取用户、电影及其相关实体,构建异构图网络。
  2. 随机游走生成:使用DeepWalk算法在图中生成随机游走序列。
  3. 嵌入表示:通过Word2Vec模型将生成的随机游走序列嵌入到低维空间中。
  4. 评分预测:计算用户节点与电影评分节点之间的相似度,预测用户对电影的评分。

项目及技术应用场景

推荐系统

Graph-Embedding-For-Recommendation-System项目特别适用于推荐系统领域。无论是电商平台的商品推荐,还是视频网站的电影推荐,该技术都能帮助平台更好地理解用户偏好,提供更精准的推荐服务。

社交网络分析

在社交网络中,用户之间的关系错综复杂。通过图嵌入技术,可以更好地捕捉用户之间的社交关系,从而实现更精准的好友推荐、内容推荐等功能。

知识图谱

在知识图谱中,实体之间的关系同样复杂。通过图嵌入技术,可以更好地表示实体之间的关系,从而实现更高效的知识推理和问答系统。

项目特点

高效性

DeepWalk算法能够在较短的时间内生成高质量的节点嵌入表示,从而实现高效的推荐。

灵活性

项目支持多种参数配置,用户可以根据具体需求调整随机游走的长度、次数以及并行处理的线程数,以达到最佳性能。

易用性

项目提供了简单的命令行接口,用户只需几行命令即可运行整个流程,无需复杂的配置和安装过程。

开源性

作为一个开源项目,Graph-Embedding-For-Recommendation-System欢迎全球开发者参与贡献,共同推动推荐系统技术的发展。

总结

Graph-Embedding-For-Recommendation-System项目通过图嵌入技术,为推荐系统提供了一种全新的解决方案。无论是推荐系统、社交网络分析还是知识图谱,该技术都能发挥重要作用。如果你正在寻找一种高效、灵活且易用的推荐系统解决方案,不妨试试Graph-Embedding-For-Recommendation-System,相信它会给你带来意想不到的惊喜!

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
25
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
837
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
34
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.93 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
149
26
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
20
2
go-iot-platformgo-iot-platform
Go IoT 平台,这是一个高效、可扩展的物联网解决方案,使用 Go 语言开发。本平台专注于提供稳定、可靠的 MQTT 客户端管理,以及对 MQTT上报数据的全面处理和分析。
Go
9
4