基于图嵌入的推荐系统:Graph-Embedding-For-Recommendation-System
项目介绍
在当今信息爆炸的时代,推荐系统已成为各大平台不可或缺的一部分。然而,传统的推荐算法往往难以捕捉用户与物品之间的复杂关系。为了解决这一问题,我们推出了Graph-Embedding-For-Recommendation-System项目,这是一个基于Python的图传播算法,利用DeepWalk技术在异构信息网络中评估和比较偏好传播算法。
该项目的主要目标是预测用户对尚未评分的物品的偏好,通过图嵌入技术实现协同过滤。具体来说,我们首先利用电影评分数据集构建了一个包含用户、电影及其相关实体(如演员、导演)的异构图网络。随后,使用DeepWalk生成随机游走序列,并通过Word2Vec将这些序列嵌入到低维空间中。最终,通过计算用户节点与电影评分节点之间的相似度,预测用户对电影的评分。
项目技术分析
核心技术:DeepWalk
DeepWalk是一种基于随机游走的图嵌入技术,能够有效地捕捉图结构中的局部和全局信息。通过在图中进行随机游走,DeepWalk能够生成一系列节点序列,这些序列类似于自然语言中的句子。随后,使用Word2Vec模型将这些序列嵌入到低维空间中,从而实现节点的高效表示。
技术实现
- 数据预处理:从电影评分数据集中提取用户、电影及其相关实体,构建异构图网络。
- 随机游走生成:使用DeepWalk算法在图中生成随机游走序列。
- 嵌入表示:通过Word2Vec模型将生成的随机游走序列嵌入到低维空间中。
- 评分预测:计算用户节点与电影评分节点之间的相似度,预测用户对电影的评分。
项目及技术应用场景
推荐系统
Graph-Embedding-For-Recommendation-System项目特别适用于推荐系统领域。无论是电商平台的商品推荐,还是视频网站的电影推荐,该技术都能帮助平台更好地理解用户偏好,提供更精准的推荐服务。
社交网络分析
在社交网络中,用户之间的关系错综复杂。通过图嵌入技术,可以更好地捕捉用户之间的社交关系,从而实现更精准的好友推荐、内容推荐等功能。
知识图谱
在知识图谱中,实体之间的关系同样复杂。通过图嵌入技术,可以更好地表示实体之间的关系,从而实现更高效的知识推理和问答系统。
项目特点
高效性
DeepWalk算法能够在较短的时间内生成高质量的节点嵌入表示,从而实现高效的推荐。
灵活性
项目支持多种参数配置,用户可以根据具体需求调整随机游走的长度、次数以及并行处理的线程数,以达到最佳性能。
易用性
项目提供了简单的命令行接口,用户只需几行命令即可运行整个流程,无需复杂的配置和安装过程。
开源性
作为一个开源项目,Graph-Embedding-For-Recommendation-System欢迎全球开发者参与贡献,共同推动推荐系统技术的发展。
总结
Graph-Embedding-For-Recommendation-System项目通过图嵌入技术,为推荐系统提供了一种全新的解决方案。无论是推荐系统、社交网络分析还是知识图谱,该技术都能发挥重要作用。如果你正在寻找一种高效、灵活且易用的推荐系统解决方案,不妨试试Graph-Embedding-For-Recommendation-System,相信它会给你带来意想不到的惊喜!
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









