推荐项目:GraphRec_PyTorch - 社交推荐的图神经网络实现
2024-05-31 11:18:43作者:庞队千Virginia
推荐项目:GraphRec_PyTorch - 社交推荐的图神经网络实现
项目介绍
GraphRec_PyTorch 是一个基于 PyTorch 的开源实现,它复现了论文《Graph Neural Networks for Social Recommendation》中提出的 GraphRec 模型。该模型将社交网络和用户行为数据融合,通过图神经网络(GNN)进行深度学习,以提升推荐系统的准确性。借助这个项目,你可以直接在 Ciao 和 Epinions 数据集上运行 GraphRec,并观察其性能。
项目技术分析
项目的核心是 GraphRec 模型,它利用 GNN 来处理用户-物品交互图以及用户之间的社交关系。模型通过节点嵌入学习,捕获用户的兴趣模式以及社交影响,从而生成更精准的个性化推荐。项目采用 Python 编写,依赖于 PyTorch 库,提供了一个简洁的代码结构,便于理解和扩展。
- 预处理:使用
preprocess.py脚本对数据集进行处理,生成用于训练和测试的文件。 - 训练:
main.py文件中的训练脚本允许调整多种参数,如学习率、批大小等,以适应不同的实验需求。 - 测试:同样在
main.py中,提供了测试模型的选项,方便评估模型的推荐效果。
项目及技术应用场景
GraphRec_PyTorch 可广泛应用于需要推荐功能的社交媒体平台,如电商网站、社交网络、音乐或电影推荐服务等。尤其对于那些用户之间存在强关联(例如,好友关系、共同兴趣)的平台,图神经网络能够更好地捕捉用户间的隐含影响,从而提高推荐的准确性和满意度。
项目特点
- PyTorch 实现:基于流行的深度学习框架 PyTorch,易于调试和优化。
- 清晰的代码结构:源码结构清晰,易于理解,方便其他研究人员复现和扩展研究。
- 支持两种数据集:内置 Ciao 和 Epinions 数据集,覆盖不同领域的用户评价信息。
- 命令行配置:可以通过命令行参数灵活地调整训练和测试设置。
- 集成社交因素:有效地整合社交网络和用户行为,提高了推荐的质量。
如果你正在寻找一种能考虑用户社交关系的推荐系统解决方案,GraphRec_PyTorch 将是一个值得一试的选择。立即安装并尝试,体验如何通过图神经网络提升你的推荐模型吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
658
150
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
643
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
293
仓颉编译器源码及 cjdb 调试工具。
C++
131
864
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言运行时与标准库。
Cangjie
138
874