VLMEvalKit项目中SEEDBench2与SEEDBench2_Plus评估结果异常问题分析
在VLMEvalKit项目使用过程中,开发者可能会遇到一个特殊现象:当尝试分别评估SEEDBench2和SEEDBench2_Plus两个数据集时,系统总是输出SEEDBench2_Plus的评估结果。这种现象实际上反映了项目配置和文件管理方面的一些技术细节。
经过深入分析,该问题主要由以下几个技术因素导致:
-
数据集文件配置问题:在较旧版本的代码库中,配置文件中可能只包含了SEEDBench2_Plus的数据集定义,而缺少了SEEDBench2的配置项。这会导致系统在接收到SEEDBench2评估请求时,默认转向SEEDBench2_Plus的评估流程。
-
文件路径管理机制:评估脚本会优先检查模型目录下是否存在对应数据集的预测结果文件。如果存在SEEDBench2_Plus的结果文件而缺少SEEDBench2的结果文件,系统可能会自动关联到可用的结果文件。
-
版本兼容性考虑:SEEDBench2_Plus实际上是SEEDBench2的扩展版本,包含了更多样化的评估内容。在项目迭代过程中,开发者可能更倾向于使用这个更新的版本作为默认评估基准。
解决方案方面,开发者可以采取以下技术措施:
-
检查数据目录中是否包含正确的SEEDBench2.tsv文件,这是评估的基础数据源。
-
确认模型输出目录中是否存在独立的SEEDBench2预测结果文件,文件命名应符合规范。
-
必要时清理旧的评估结果文件,避免系统自动关联到不相关的评估结果。
-
更新到最新版本的代码库,确保配置文件包含完整的数据集定义。
值得注意的是,InternVL-Chat-V1-5模型在SEEDBench2上的预期评估结果约为0.59,这一指标可以作为验证评估是否正确的参考标准。开发者在使用评估工具时,应当关注这些技术细节,确保评估结果的准确性和可靠性。
对于视觉语言模型评估这一专业领域,正确理解评估数据集的版本差异和评估工具的工作机制至关重要。这不仅能帮助开发者准确评估模型性能,也能为后续的模型优化提供可靠的数据支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00