Daggy 项目教程
2024-09-12 08:07:52作者:毕习沙Eudora
1. 项目介绍
Daggy 是一个开源项目,旨在提供一个简单而强大的工具,用于管理和组织数据流。它支持多种数据源和数据目标,允许用户轻松地创建、配置和管理数据管道。Daggy 的设计理念是简单易用,同时保持高度的灵活性和可扩展性。
2. 项目快速启动
2.1 安装 Daggy
首先,确保你已经安装了 Python 3.7 或更高版本。然后,使用 pip 安装 Daggy:
pip install daggy
2.2 创建第一个数据管道
创建一个简单的数据管道,从一个 CSV 文件读取数据并将其写入另一个 CSV 文件。
from daggy import Daggy
# 创建一个 Daggy 实例
daggy = Daggy()
# 定义数据源
source = daggy.source('csv', {'path': 'input.csv'})
# 定义数据目标
target = daggy.target('csv', {'path': 'output.csv'})
# 创建数据管道
daggy.connect(source, target)
# 运行数据管道
daggy.run()
2.3 运行项目
将上述代码保存为 pipeline.py,然后在终端中运行:
python pipeline.py
3. 应用案例和最佳实践
3.1 数据清洗
Daggy 可以用于数据清洗任务。例如,你可以从一个数据库中读取数据,进行清洗和转换,然后将结果写入另一个数据库。
from daggy import Daggy
daggy = Daggy()
# 从数据库读取数据
source = daggy.source('database', {'url': 'mysql://user:password@localhost/dbname'})
# 定义清洗操作
clean_op = daggy.operation('clean', {'columns': ['name', 'age']})
# 将清洗后的数据写入另一个数据库
target = daggy.target('database', {'url': 'postgresql://user:password@localhost/dbname'})
# 创建数据管道
daggy.connect(source, clean_op, target)
# 运行数据管道
daggy.run()
3.2 数据同步
Daggy 还可以用于数据同步任务。例如,你可以将数据从一个云存储同步到另一个云存储。
from daggy import Daggy
daggy = Daggy()
# 从 AWS S3 读取数据
source = daggy.source('s3', {'bucket': 'source-bucket', 'key': 'data.csv'})
# 将数据写入 Google Cloud Storage
target = daggy.target('gcs', {'bucket': 'target-bucket', 'key': 'data.csv'})
# 创建数据管道
daggy.connect(source, target)
# 运行数据管道
daggy.run()
4. 典型生态项目
4.1 Apache Airflow
Daggy 可以与 Apache Airflow 集成,用于创建和管理复杂的数据管道。Airflow 提供了强大的调度功能,而 Daggy 提供了灵活的数据处理能力。
4.2 Apache Kafka
Daggy 可以与 Apache Kafka 集成,用于实时数据处理。你可以使用 Daggy 从 Kafka 主题中读取数据,进行处理,然后将结果写入另一个 Kafka 主题或外部存储。
4.3 Apache Spark
Daggy 可以与 Apache Spark 集成,用于大规模数据处理。你可以使用 Daggy 从 Spark 中读取数据,进行处理,然后将结果写回 Spark 或外部存储。
通过这些集成,Daggy 可以扩展其功能,满足各种复杂的数据处理需求。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
267
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
52
32